skip to main content

This content will become publicly available on November 7, 2024

Title: Methods for mediation analysis with high-dimensional DNA methylation data: Possible choices and comparisons

Epigenetic researchers often evaluate DNA methylation as a potential mediator of the effect of social/environmental exposures on a health outcome. Modern statistical methods for jointly evaluating many mediators have not been widely adopted. We compare seven methods for high-dimensional mediation analysis with continuous outcomes through both diverse simulations and analysis of DNAm data from a large multi-ethnic cohort in the United States, while providing an R package for their seamless implementation and adoption. Among the considered choices, the best-performing methods for detecting active mediators in simulations are the Bayesian sparse linear mixed model (BSLMM) and high-dimensional mediation analysis (HDMA); while the preferred methods for estimating the global mediation effect are high-dimensional linear mediation analysis (HILMA) and principal component mediation analysis (PCMA). We provide guidelines for epigenetic researchers on choosing the best method in practice and offer suggestions for future methodological development.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ;
Kutalik, Zoltán
Publisher / Repository:
PLOS Genetics
Date Published:
Journal Name:
PLOS Genetics
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Causal mediation analysis aims to characterize an exposure's effect on an outcome and quantify the indirect effect that acts through a given mediator or a group of mediators of interest. With the increasing availability of measurements on a large number of potential mediators, like the epigenome or the microbiome, new statistical methods are needed to simultaneously accommodate high-dimensional mediators while directly target penalization of the natural indirect effect (NIE) for active mediator identification. Here, we develop two novel prior models for identification of active mediators in high-dimensional mediation analysis through penalizing NIEs in a Bayesian paradigm. Both methods specify a joint prior distribution on the exposure-mediator effect and mediator-outcome effect with either (a) a four-component Gaussian mixture prior or (b) a product threshold Gaussian prior. By jointly modelling the two parameters that contribute to the NIE, the proposed methods enable penalization on their product in a targeted way. Resultant inference can take into account the four-component composite structure underlying the NIE. We show through simulations that the proposed methods improve both selection and estimation accuracy compared to other competing methods. We applied our methods for an in-depth analysis of two ongoing epidemiologic studies: the Multi-Ethnic Study of Atherosclerosis (MESA) and the LIFECODES birth cohort. The identified active mediators in both studies reveal important biological pathways for understanding disease mechanisms.

    more » « less
  2. We consider Bayesian high‐dimensional mediation analysis to identify among a large set of correlated potential mediators the active ones that mediate the effect from an exposure variable to an outcome of interest. Correlations among mediators are commonly observed in modern data analysis; examples include the activated voxels within connected regions in brain image data, regulatory signals driven by gene networks in genome data, and correlated exposure data from the same source. When correlations are present among active mediators, mediation analysis that fails to account for such correlation can be suboptimal and may lead to a loss of power in identifying active mediators. Building upon a recent high‐dimensional mediation analysis framework, we propose two Bayesian hierarchical models, one with a Gaussian mixture prior that enables correlated mediator selection and the other with a Potts mixture prior that accounts for the correlation among active mediators in mediation analysis. We develop efficient sampling algorithms for both methods. Various simulations demonstrate that our methods enable effective identification of correlated active mediators, which could be missed by using existing methods that assume prior independence among active mediators. The proposed methods are applied to the LIFECODES birth cohort and the Multi‐Ethnic Study of Atherosclerosis (MESA) and identified new active mediators with important biological implications.

    more » « less
  3. Abstract

    Causal mediation analysis aims to examine the role of a mediator or a group of mediators that lie in the pathway between an exposure and an outcome. Recent biomedical studies often involve a large number of potential mediators based on high‐throughput technologies. Most of the current analytic methods focus on settings with one or a moderate number of potential mediators. With the expanding growth of ‐omics data, joint analysis of molecular‐level genomics data with epidemiological data through mediation analysis is becoming more common. However, such joint analysis requires methods that can simultaneously accommodate high‐dimensional mediators and that are currently lacking. To address this problem, we develop a Bayesian inference method using continuous shrinkage priors to extend previous causal mediation analysis techniques to a high‐dimensional setting. Simulations demonstrate that our method improves the power of global mediation analysis compared to simpler alternatives and has decent performance to identify true nonnull contributions to the mediation effects of the pathway. The Bayesian method also helps us to understand the structure of the composite null cases for inactive mediators in the pathway. We applied our method to Multi‐Ethnic Study of Atherosclerosis and identified DNA methylation regions that may actively mediate the effect of socioeconomic status on cardiometabolic outcomes.

    more » « less
  4. Low socioeconomic status (SES) and living in a disadvantaged neighborhood are associated with poor cardiovascular health. Multiple lines of evidence have linked DNA methylation to both cardiovascular risk factors and social disadvantage indicators. However, limited research has investigated the role of DNA methylation in mediating the associations of individual- and neighborhood-level disadvantage with multiple cardiovascular risk factors in large, multi-ethnic, population-based cohorts. We examined whether disadvantage at the individual level (childhood and adult SES) and neighborhood level (summary neighborhood SES as assessed by Census data and social environment as assessed by perceptions of aesthetic quality, safety, and social cohesion) were associated with 11 cardiovascular risk factors including measures of obesity, diabetes, lipids, and hypertension in 1,154 participants from the Multi-Ethnic Study of Atherosclerosis (MESA). For significant associations, we conducted epigenome-wide mediation analysis to identify methylation sites mediating the relationship between individual/neighborhood disadvantage and cardiovascular risk factors using the JT-Comp method that assesses sparse mediation effects under a composite null hypothesis. In models adjusting for age, sex, race/ethnicity, smoking, medication use, and genetic principal components of ancestry, epigenetic mediation was detected for the associations of adult SES with body mass index (BMI), insulin, and high-density lipoprotein cholesterol (HDL-C), as well as for the association between neighborhood socioeconomic disadvantage and HDL-C at FDRq< 0.05. The 410 CpG mediators identified for the SES-BMI association were enriched for CpGs associated with gene expression (expression quantitative trait methylation loci, or eQTMs), and corresponding genes were enriched in antigen processing and presentation pathways. For cardiovascular risk factors other than BMI, most of the epigenetic mediators lost significance after controlling for BMI. However, 43 methylation sites showed evidence of mediating the neighborhood socioeconomic disadvantage and HDL-C association after BMI adjustment. The identified mediators were enriched for eQTMs, and corresponding genes were enriched in inflammatory and apoptotic pathways. Our findings support the hypothesis that DNA methylation acts as a mediator between individual- and neighborhood-level disadvantage and cardiovascular risk factors, and shed light on the potential underlying epigenetic pathways. Future studies are needed to fully elucidate the biological mechanisms that link social disadvantage to poor cardiovascular health.

    more » « less
  5. Abstract

    With advancements in technology, the collection of multiple types of measurements on a common set of subjects is becoming routine in science. Some notable examples include multimodal neuroimaging studies for the simultaneous investigation of brain structure and function and multi‐omics studies for combining genetic and genomic information. Integrative analysis of multimodal data allows scientists to interrogate new mechanistic questions. However, the data collection and generation of integrative hypotheses is outpacing available methodology for joint analysis of multimodal measurements. In this article, we study high‐dimensional multimodal data integration in the context of mediation analysis. We aim to understand the roles that different data modalities play as possible mediators in the pathway between an exposure variable and an outcome. We propose a mediation model framework with two data types serving as separate sets of mediators and develop a penalized optimization approach for parameter estimation. We study both the theoretical properties of the estimator through an asymptotic analysis and its finite‐sample performance through simulations. We illustrate our method with a multimodal brain pathway analysis having both structural and functional connectivity as mediators in the association between sex and language processing.

    more » « less