In recent years, there has been a specific call to not only increase the number of engineering-trained individuals but also to address the lack of diversity in science, technology, engineering and mathematics (STEM) fields, including individuals with disabilities. In particular, students with learning disabilities (SWLDs) make up a large portion of all students and are, therefore, a crucial population on which to focus educational and career progression efforts. One potential means of promoting persistence along the STEM pipeline—engineering specifically—is through engineering career and technical education (E-CTE) coursework in high school. Using a nationally representative dataset, we explore how E-CTE participation links to college preparation and transition activities for SWLDs, including math SAT performance, dual credit course participation, college application, and FAFSA completion. Under our more rigorous school fixed-effects models, we find that E-CTE participation is associated with beneficial results across each of our outcomes. The implications are discussed.
more »
« less
Exploring the role of high school engineering courses in promoting science attitudes for students with learning disabilities
Abstract Demand for engineering‐interested and proficient high school graduates continues to grow across the nation. However, there remains a severe gap in college participation and employment in engineering fields for students with learning disabilities (SWLDs). One potential way to encourage SWLDs to consider engineering as a profession and promote the development of key science attitudes may be through engineering and technology career and technical education (E‐CTE) coursework. In this study, we address the following research questions: Do SWLDs take E‐CTE courses in the early years of high school at different rates compared to students without learning disabilities? What is the relationship between early E‐CTE coursetaking and science attitudes (self‐efficacy, utility, identity), and does this differ for students with and without learning disabilities? How do specific engineering career expectations change with respect to enrollment in early E‐CTE coursework, and do these differ for students with and without learning disabilities? We utilize the High School Longitudinal Study of 2009 (HSLS) to respond to the research questions through moderation models and a student fixed effects methodology. Ultimately, we found no evidence of SWLD underrepresentation in E‐CTE in high school. However, SWLDs were expected to benefit more than the general population from E‐CTE participation with respect to higher levels of science self‐efficacy and science identity. Implications from these findings include how to encourage persistence along the engineering pathway, the growth of career pathway policies at the state level, and how to incorporate E‐CTE practices in academic courses.
more »
« less
- Award ID(s):
- 2109938
- PAR ID:
- 10480512
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Journal of Research in Science Teaching
- ISSN:
- 0022-4308
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Despite growing calls to increase diversity in science, technology, engineering, and mathematics (STEM) fields, students with learning disabilities (SWLDs) remain underrepresented in STEM at the postsecondary level. Considering this call for increased diversity as a means to expand and strengthen STEM success, we used the High School Longitudinal Study of 2009 to explore how participation in engineering career and technical education (E-CTE) links to postsecondary educational outcomes for SWLDs. Particularly, we examined how E-CTE participation relates to postsecondary remedial course taking, enrollment in a 4-year postsecondary institution, and declaration of a STEM major. Results from school fixed-effects estimations suggest that each credit of E-CTE earned is associated with fewer remedial college courses, a higher likelihood of enrolling in a 4-year as opposed to sub-baccalaureate institution, and increased odds of declaring a STEM major. To conclude, we discuss the implications of our findings for both policymakers and practitioners.more » « less
-
In this research-based paper, we explore the relationships among Rice University STEM students’ high school preparation, psychological characteristics, and career aspirations. Although greater high school preparation in STEM coursework predicts higher STEM retention and performance in college [1], objective academic preparation and college performance do not fully explain STEM retention decisions, and the students who leave STEM are often not the lowest performing students [2]. Certain psychosocial experiences may also influence students’ STEM decisions. We explored the predictive validity of 1) a STEM diagnostic exam as an objective measure of high school science and math preparation and 2) self-efficacy as a psychological measure on long-term (three years later) STEM career aspirations and STEM identity of underprepared Rice STEM students. University administrators use diagnostic exam scores (along with other evidence of high school underpreparation) to identify students who might benefit from additional support. Using linear regression to explore the link between diagnostic exam scores and self-efficacy, exam scores predicted self-efficacy a semester after students’ first semester in college; exam scores were also marginally correlated with self-efficacy three years later. Early STEM career aspirations predicted later career aspirations, accounting for 21.3% of the variance of career outcome expectations three years later (β=.462, p=.006). Scores on the math diagnostic exam accounted for an additional 10.1% of the variance in students’ three-year STEM career aspirations (p=.041). Self-efficacy after students’ first semester did not predict future STEM aspirations. Early STEM identity explained 28.8% of the variance in three-year STEM identity (p=.001). Math diagnostic exam scores accounted for only marginal incremental variance after STEM identity, and self-efficacy after students’ first semester did not predict three-year STEM aspirations. Overall, we found that the diagnostic exam provided incremental predictive validity in STEM career aspirations after students’ sixth semester of college, indicating that early STEM preparation has long-lasting ramifications for students’ STEM career intentions. Our next steps include examining whether students’ diagnostic exam scores predict STEM graduation rates and final GPAs for science and math versus engineering majors.more » « less
-
As more institutions create first year engineering programs that teach an engineering design process, there is a growing desire to prepare students for this coursework in the high school setting. When exposing such a broad population to these ideas, a primary question arises regarding student attitudes toward engineering and how these attitudes develop over time. That is, how does this exposure to engineering design influence student attitudes toward engineering? Moreover, answering this question will allow educators to better understand what motivates students to learn, how much their motivation impacts their overall mastery of these skills, and how these aspects of engineering self-efficacy and engineering design may differ between those who are on a pre-engineering track and those who are not. To begin answering this question, high school students enrolled in the Olathe City school system of Olathe, Kansas completed Engineering Problem-Framing Design Activities (EPDAs) in participating science courses (AP physics, physics, advanced biotechnology, chemistry, honors chemistry, biology, honors biology, and physical science specifically) of the traditional science and engineering academy curriculums offered by the district. Student engineering self-efficacy and motivation was also measured at the beginning and end of their coursework. This was conducted via a new instrument, the Engineering Design Value-Expectancy Scale (EDVES), which includes 38 items across three primary subscales: expectancy of success in, perceived value of, and identification with engineering and design. The development of this tool was presented and discussed in a previous study where the EDVES instrument was analyzed for validity among first-year undergraduate engineering students. In this work, the responses of high school students on the EDVES were analyzed to establish validity in this new population and to begin exploring trends in student responses based on their sub-population. Validity testing was completed via Cook’s validation evidence model with respect to scoring, generalization, and extrapolation evidence. The pre-course EDVES responses obtained were used to complete validation and trend analysis (note that post-course data was not readily available at the time of analysis).more » « less
-
nterest in science, technology, engineering, and mathematics (STEM) begins as early as elementary and middle school. As youth enter adolescence, they begin to shape their personal identities and start making decisions about who they are and could be in the future. Students form their career aspirations and interests related to STEM in elementary school, long before they choose STEM coursework in high school or college. Much of the literature examines either science or STEM identity and career aspirations without separating out individual sub-disciplines. Therefore, the purpose of this paper is to describe the development of a survey instrument to specifically measure engineering identity and career aspirations in adolescents and preadolescents. When possible, we utilized existing measures of STEM identity and career aspirations, adapting them when necessary to the elementary school level and to fit the engineering context. The instrument was developed within the context of a multi-year, NSF-funded research project examining the dynamics between undergraduate outreach providers and elementary students to understand the impact of the program on students’ engineering identity and career aspirations. Three phases of survey development were conducted that involved 492 elementary students from diverse communities in the United States. Three sets of items were developed and/or adapted throughout the four phases. The first set of items assessed Engineering Identity. Recent research suggests that identity consists of three components: recognition, interest, and performance/competence. Items assessing each of these constructs were included in the survey. The second and third sets of items reflected Career Interests and Aspirations. Because elementary and middle school students often have a limited or nascent awareness of what engineers do or misconceptions about what a job in science or engineering entails, it is problematic to measure their engineering identity or career aspirations by directly asking them whether they want to be a scientist/engineer or by using a checklist of broad career categories. Therefore, similar to other researchers, the second set of items assessed the types of activities that students are interested in doing as part of a future career, including both non-STEM and STEM (general and engineering-specific) activities. These items were created by the research team or adapted from activity lists used in existing research. The third set of items drew from career counseling measures relying on Holland’s Career Codes. We adapted the format of these instruments by asking students to choose the activity they liked the most from a list of six activities that reflected each of the codes rather than responding to their interest about each activity. Preliminary findings for each set of items will be discussed. Results from the survey contribute to our understanding of engineering identities and career aspirations in preadolescent and adolescent youth. However, our instrument has the potential for broader application in non-engineering STEM environments (e.g., computer science) with minor wording changes to reflect the relevant science subject area. More research is needed in determining its usefulness in this capacity.more » « less
An official website of the United States government

