skip to main content


Title: Exploring the Development of Engineering Design Creativity and the Role of Spatial Skills in this Process
This study aims to investigate the development of creativity in engineering education and how spatial skills relate to creativity of design solutions. Undergraduate students in the first (n=86) and fourth/fifth year (n=48) of their engineering programme were invited to participate. Students completed four spatial tests to precisely measure visualisation skills. In a separate session, students were invited back to solve two engineering design tasks: a ping pong problem where they designed a ping pong ball launcher game to meet specified criteria and a rain catcher problem where they were tasked with developing as many ideas for capturing rainwater as a water source for a remote location as they could. Students were asked not to consider feasibility, cost, etc. and to come up multiple radical solutions to the rainwater capture problem. The creativity of design solutions was assessed using Adaptive Comparative Judgement. Statistical analysis indicated significant relationships between spatial skills, students’ year of study and gender. A statistically significant relationship was also found between students’ creativity scores on both design challenges. No statistical differences were determined in the creativity of first and fourth/fifth year students’ solutions. These findings will be discussed relative to existing research, future work, and potential implications for education practice.  more » « less
Award ID(s):
2020785
NSF-PAR ID:
10480535
Author(s) / Creator(s):
;
Publisher / Repository:
SEFI Conference Proceedings
Date Published:
Journal Name:
SEFI Conference Proceedings
Subject(s) / Keyword(s):
Spatial skills creativity design problem solving
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Design is a core attribute of engineering practice; in fact, the etymology of the word engineer is traced to the Latin “ingeniare,” which translates as inventor or designer. In order to prepare our students for success in an engineering career, they must be proficient at design and able to think creatively and flexibly about optimal solutions to problems. Additionally, numerous studies have demonstrated the need for well-developed spatial skills for success in engineering, especially in engineering problem solving. Studies also show a link between spatial thinking and technical creativity. The focus of this research is on understanding the relationship between spatial visualization skills and engineering design. As a first phase of testing, 127 undergraduate engineering students completed four tests of spatial ability. In a second phase, 102 students returned and were asked to complete three tasks. The first was designing a ping pong ball launcher to hit a target at a specific height from a given distance. They were then asked to list as many factors as possible that should be considered when designing a retaining wall for mitigating flood damage along the Mississippi River in the Midwest in the United States. The third task was to sketch as many ideas as possible in a given timeframe for a rainwater collection system in a remote location. This research paper will present preliminary analysis of the Midwest Flood problem and spatial ability data. The initial insights will be discussed relative to the overall study and how this work could inform undergraduate engineering education, and specifically the provision of design education. 
    more » « less
  2. This Complete Research paper investigates the holistic assessment of creativity in design solutions in engineering education. Design is a key element in contemporary engineering education, given the emphasis on its development through the ABET criteria. As such, design projects play a central role in many first-year engineering courses. Creativity is a vital component of design capability which can influence design performance; however, it is difficult to measure through traditional assessment rubrics and holistic assessment approaches may be more suitable to assess creativity of design solutions. One such holistic assessment approach is Adaptive Comparative Judgement (ACJ). In this system, student designs are presented to judges in pairs, and they are asked to select the item of work that they deem to have demonstrated the greatest level of a specific criterion or set of criteria. Each judge is asked to make multiple judgements where the work they are presented with is adaptively paired in order to create a ranked order of all items in the sample. The use of this assessment approach in technology education has demonstrated high levels of reliability among judges (~0.9) irrespective of whether the judges are students or faculty. This research aimed to investigate the use of ACJ to holistically assess the creativity of first-year engineering students design solutions. The research also sought to explore the differences, if any, that would exist between the rank order produced by first-year engineering students and the faculty who regularly teach first-year students. Forty-six first-year engineering students and 23 faculty participated in this research. A separate ACJ session was carried out with each of these groups; however, both groups were asked to assess the same items of work. Participants were instructed to assess the creativity of 101 solutions to a design task, a “Ping Pong problem,” where undergraduate engineering students had been asked to design a ping pong ball launcher to meet specific criteria. In both ACJ sessions each item of work was included in at least 11 pairwise comparisons, with the maximum number of comparisons for a single item being 29 in the faculty ACJ session and 50 in the student ACJ session. The data from the ACJ sessions were analyzed to determine the reliability of using ACJ to assess creativity of design solutions in first-year engineering education, and to explore whether the rankings produced from the first-year engineering students ACJ session differed significantly from those of the faculty. The results indicate a reasonably high level of reliability in both sessions as measured by the Scale Separation Reliability (SSR) coefficient, SSRfaculty = 0.65 ± 0.02, SSRstudents = 0.71 ± 0.02. Further a strong correlation was observed between the ACJ ranks produced by the students and faculty both when considered in terms of the relative differences between items of work, r = .533, p < .001, and their absolute rank position, σ = .553, p < .001. These findings indicate that ACJ is a promising tool for holistically assessing design solutions in engineering education. Additionally, given the strong correlation between ranks of students and faculty, ACJ could be used to include students in their own assessment to reduce the faculty grading burden or to develop a shared construct of capability which could increase the alignment of teaching and learning. 
    more » « less
  3. This research paper details a study investigating spatial visualization skills relation to design problem-solving for undergraduate engineering students. Design is outlined as one of the seven attributes that engineering students must demonstrate prior to their graduation as set out through the ABET guidelines. It is important to understand the factors that contribute to design capability to achieve this learning goal. Design problems by their nature are cognitive tasks and as such require problem solvers to draw both on learned knowledge and pertinent cognitive abilities for their solution. In the context of engineering design problem solving, spatial visualization is one such cognitive ability that likely plays a role. Previous research has demonstrated a link between spatial visualization and design. This work aims to advance on that research by exploring how spatial visualization relates to the design process enacted by undergraduate engineering students. There were two phases to data collection for this research. In the first phase, 127 undergraduate engineering students completed four spatial tests. In the second phase, 17 students returned to complete three design tasks. This paper will focus on one of these design tasks, the Ping Pong problem where individuals are asked to design a ping pong launcher to hit a target from a given distance at a specific height. A purposive sample of 9 first-year and 8 senior students were selected to engage in a think aloud protocol during the problemsolving task based on their spatial visualization skill levels (high vs. low). The think aloud protocol was used to assign pre-defined codes for design activity for each of the 17 participants. Through analysis of these codes, results indicated that there is an association between the spatial skills of students and the design processes/actions that they employ. These insights will be discussed relative to their potential influence on engineering education, specifically in developing design capability. 
    more » « less
  4. A multidisciplinary service-learning project that involved teaching engineering to fourth and fifth graders was implemented in three sets of engineering and education classes to determine if there was an impact on engineering knowledge and teamwork skills in both the engineering and education students as well as persistence in the engineering students. Collaboration 1 paired a 100-level engineering Information Literacy class in Mechanical and Aerospace Engineering with a 300-level Educational Foundation class. Collaboration 2 combined a 300-level Electromechanical Systems class in Mechanical Engineering with a 400-level Educational Technology class. Collaboration 3 paired a 300-level Fluid Mechanics class in Mechanical Engineering Technology with a 400-level Elementary Science Methods class. Collaborations 1 and 3 interacted with fourth or fifth graders by developing and delivering lessons to the elementary students. Students in collaboration 2 worked with fifth graders in an after-school technology club. While each collaboration had its unique elements, all collaborations included the engineering design process both in classroom instruction and during the service learning project. Quantitative data were collected from both engineering and education students in a pretest/posttest design. Teamwork skills were measured in engineering students using a validated teamwork skills assessment based on peer evaluation. Each class had a comparison class taught by the same instructor that included a team project, and the same quantitative measures. Engineering students who participated in collaboration 1 were evaluated for retention, which was defined as students who were still enrolled in the college of engineering and technology two semesters after completion of the course. Engineering students also completed an evaluation of academic and professional persistence. For the engineering students, none of the assessments involving technical skills had significant differences, although the design process knowledge tests trended upward in the treatment classes. The preservice teachers in the treatment group scored significantly higher in the design process knowledge test, and preservice teachers in collaborations 1 and 3 had higher scores in the engineering knowledge test than the comparison group. Teamwork skills in the treatment group were significantly higher than in the comparison group for both engineering and education students. Thus, engineering and education students in the treatment groups saw gains in teamwork skills, while education students saw more gains in engineering knowledge. Finally, all engineering students had significantly higher professional persistence. 
    more » « less
  5. null (Ed.)
    Background - One of the most critical challenges in engineering education is improving students’ divergent thinking skills. Usually, we observe students’ fixating on only one single solution for engineering problems. However, their ability to think outside the box and provide alternative solutions should be developed. Research shows that engagement may foster the development of thoughts and boost creativity. Purpose/Hypothesis – Our aim was to investigate students’ engagement with tasks that inspire different facets of creativity (verbal, numeric, and visual). Considering the role of demographics in student engagement, we explored the relationship between their engagement level and demographic traits such as gender, major, age, grades (GPA), and the languages they know besides their native tongue. Design/Method - We utilized electrodermal activity (EDA) sensors, a well-documented proxy of emotional engagement, to measure students’ engagement level while performing tasks that inspire different facets of creativity (verbal, numeric, and visual). Due to the non-normal distribution of the data, non-parametric statistical tests were conducted considering engagement as a dependent variable and demographic traits as independent variables. Results - Statistically significant differences in students’ engagement when exposed to creativity inspired tasks were observed. However, no association between demographics and engagement levels were detected. Conclusions - The results of the study may support educators in designing the instructional materials considering creativity-inspired activities so that students’ engagement level can be increased. Further, results from this study can inform experimental designs, specifically participant selection, in engagement focused studies. 
    more » « less