skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Historical Contingency Causes Divergence in Adaptive Expression of the lac Operon
Abstract Populations of Escherichia coli selected in constant and fluctuating environments containing lactose often adapt by substituting mutations in the lacI repressor that cause constitutive expression of the lac operon. These mutations occur at a high rate and provide a significant benefit. Despite this, eight of 24 populations evolved for 8,000 generations in environments containing lactose contained no detectable repressor mutations. We report here on the basis of this observation. We find that, given relevant mutation rates, repressor mutations are expected to have fixed in all evolved populations if they had maintained the same fitness effect they confer when introduced to the ancestor. In fact, reconstruction experiments demonstrate that repressor mutations have become neutral or deleterious in those populations in which they were not detectable. Populations not fixing repressor mutations nevertheless reached the same fitness as those that did fix them, indicating that they followed an alternative evolutionary path that made redundant the potential benefit of the repressor mutation, but involved unique mutations of equivalent benefit. We identify a mutation occurring in the promoter region of the uspB gene as a candidate for influencing the selective choice between these paths. Our results detail an example of historical contingency leading to divergent evolutionary outcomes.  more » « less
Award ID(s):
1354952
PAR ID:
10480614
Author(s) / Creator(s):
; ; ;
Editor(s):
Wittkopp, Patricia
Publisher / Repository:
Oxford Academic
Date Published:
Journal Name:
Molecular Biology and Evolution
Volume:
38
Issue:
7
ISSN:
1537-1719
Page Range / eLocation ID:
2869 to 2879
Subject(s) / Keyword(s):
adaptation, epistasis, gene expression, lac operon, experimental evolution
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Gaut, Brandon (Ed.)
    Abstract How microbes adapt to a novel environment is a central question in evolutionary biology. Although adaptive evolution must be fueled by beneficial mutations, whether higher mutation rates facilitate the rate of adaptive evolution remains unclear. To address this question, we cultured Escherichia coli hypermutating populations, in which a defective methyl-directed mismatch repair pathway causes a 140-fold increase in single-nucleotide mutation rates. In parallel with wild-type E. coli, populations were cultured in tubes containing Luria-Bertani broth, a complex medium known to promote the evolution of subpopulation structure. After 900 days of evolution, in three transfer schemes with different population-size bottlenecks, hypermutators always exhibited similar levels of improved fitness as controls. Fluctuation tests revealed that the mutation rates of hypermutator lines converged evolutionarily on those of wild-type populations, which may have contributed to the absence of fitness differences. Further genome-sequence analysis revealed that, although hypermutator populations have higher rates of genomic evolution, this largely reflects strong genetic linkage. Despite these linkage effects, the evolved population exhibits parallelism in fixed mutations, including those potentially related to biofilm formation, transcription regulation, and mutation-rate evolution. Together, these results are generally inconsistent with a hypothesized positive relationship between the mutation rate and the adaptive speed of evolution, and provide insight into how clonal adaptation occurs in novel environments. 
    more » « less
  2. null (Ed.)
    Laboratory experimental evolution provides a window into the details of the evolutionary process. To investigate the consequences of long-term adaptation, we evolved 205 Saccharomyces cerevisiae populations (124 haploid and 81 diploid) for ~10,000 generations in three environments. We measured the dynamics of fitness changes over time, finding repeatable patterns of declining adaptability. Sequencing revealed that this phenotypic adaptation is coupled with a steady accumulation of mutations, widespread genetic parallelism, and historical contingency. In contrast to long-term evolution in E. coli , we do not observe long-term coexistence or populations with highly elevated mutation rates. We find that evolution in diploid populations involves both fixation of heterozygous mutations and frequent loss-of-heterozygosity events. Together, these results help distinguish aspects of evolutionary dynamics that are likely to be general features of adaptation across many systems from those that are specific to individual organisms and environmental conditions. 
    more » « less
  3. The mutation rate and mutations' effects on fitness are crucial to evolution. Mutation rates are under selection due to linkage between mutation rate modifiers and mutations' effects on fitness. The linkage between a higher mutation rate and more beneficial mutations selects for higher mutation rates, while the linkage between a higher mutation rate and more deleterious mutations selects for lower mutation rates. The net direction of selection on mutations rates depends on the fitness landscape, and a great deal of work has elucidated the fitness landscapes of mutations. However, tests of the effect of varying a mutation rate on evolution in a single organism in a single environment have been difficult. This has been studied using strains of antimutators and mutators, but these strains may differ in additional ways and typically do not allow for continuous variation of the mutation rate. To help investigate the effects of the mutation rate on evolution, we have genetically engineered a strain of E. coli with a point mutation rate that can be smoothly varied over two orders of magnitude. We did this by engineering a strain with inducible control of the mismatch repair proteins MutH and MutL. We used this strain in an approximately 350 generation evolution experiment with controlled variation of the mutation rate. We confirmed the construct and the mutation rate were stable over this time. Sequencing evolved strains revealed a higher number of single nucleotide polymorphisms at higher mutations rates, likely due to either the beneficial effects of these mutations or their linkage to beneficial mutations. 
    more » « less
  4. Contrary to previous assumptions that most mutations are deleterious, there is increasing evidence for persistence of large-effect mutations in natural populations. A possible explanation for these observations is that mutant phenotypes and fitness may depend upon the specific environmental conditions to which a mutant is exposed. Here, we tested this hypothesis by growing large-effect flowering time mutants of Arabidopsis thaliana in multiple field sites and seasons to quantify their fitness effects in realistic natural conditions. By constructing environment-specific fitness landscapes based on flowering time and branching architecture, we observed that a subset of mutations increased fitness, but only in specific environments. These mutations increased fitness via different paths: through shifting flowering time, branching, or both. Branching was under stronger selection, but flowering time was more genetically variable, pointing to the importance of indirect selection on mutations through their pleiotropic effects on multiple phenotypes. Finally, mutations in hub genes with greater connectedness in their regulatory networks had greater effects on both phenotypes and fitness. Together, these findings indicate that large-effect mutations may persist in populations because they influence traits that are adaptive only under specific environmental conditions. Understanding their evolutionary dynamics therefore requires measuring their effects in multiple natural environments. 
    more » « less
  5. We provide a partial test of the mitonuclear sex hypothesis with the first controlled study of how male frequencies and rates of outcrossing evolve in response to mitonuclear mismatch by allowing replicate lineages of C. elegans nematodes containing either mitochondrial or nuclear mutations of electron transport chain (ETC) genes to evolve under three sexual systems: facultatively outcrossing (wildtype), obligately selfing, and obligately outcrossing. Among facultatively outcrossing lines, we found evolution of increased male frequency in at least one replicate line of all four ETC mutant backgrounds tested—nuclear isp-1 , mitochondrial cox-1 and ctb-1 , and an isp-1 IV; ctb-1M mitonuclear double mutant—and confirmed for a single line set ( cox-1 ) that increased male frequency also resulted in successful outcrossing. We previously found the same result for lines evolved from another nuclear ETC mutant, gas-1 . For several lines in the current experiment, however, male frequency declined to wildtype levels (near 0%) in later generations. Male frequency did not change in lines evolved from a wildtype control strain. Additional phenotypic assays of lines evolved from the mitochondrial cox-1 mutant indicated that evolution of high male frequency was accompanied by evolution of increased male sperm size and mating success with tester females, but that it did not translate into increased mating success with coevolved hermaphrodites. Rather, hermaphrodites’ self-crossed reproductive fitness increased, consistent with sexually antagonistic coevolution. In accordance with evolutionary theory, males and sexual outcrossing may be most beneficial to populations evolving from a state of low ancestral fitness ( gas-1 , as previously reported) and less beneficial or deleterious to those evolving from a state of higher ancestral fitness ( cox-1 ). In support of this idea, the obligately outcrossing fog-2 V; cox-1 M lines exhibited no fitness evolution compared to their ancestor, while facultatively outcrossing lines showed slight upward evolution of fitness, and all but one of the obligately selfing xol-1 X; cox-1 M lines evolved substantially increased fitness—even beyond wildtype levels. This work provides a foundation to directly test the effect of reproductive mode on the evolutionary dynamics of mitonuclear genomes, as well as whether compensatory mutations (nuclear or mitochondrial) can rescue populations from mitochondrial dysfunction. 
    more » « less