Abstract BackgroundThe global human footprint has fundamentally altered wildfire regimes, creating serious consequences for human health, biodiversity, and climate. However, it remains difficult to project how long-term interactions among land use, management, and climate change will affect fire behavior, representing a key knowledge gap for sustainable management. We used expert assessment to combine opinions about past and future fire regimes from 99 wildfire researchers. We asked for quantitative and qualitative assessments of the frequency, type, and implications of fire regime change from the beginning of the Holocene through the year 2300. ResultsRespondents indicated some direct human influence on wildfire since at least ~ 12,000 years BP, though natural climate variability remained the dominant driver of fire regime change until around 5,000 years BP, for most study regions. Responses suggested a ten-fold increase in the frequency of fire regime change during the last 250 years compared with the rest of the Holocene, corresponding first with the intensification and extensification of land use and later with anthropogenic climate change. Looking to the future, fire regimes were predicted to intensify, with increases in frequency, severity, and size in all biomes except grassland ecosystems. Fire regimes showed different climate sensitivities across biomes, but the likelihood of fire regime change increased with higher warming scenarios for all biomes. Biodiversity, carbon storage, and other ecosystem services were predicted to decrease for most biomes under higher emission scenarios. We present recommendations for adaptation and mitigation under emerging fire regimes, while recognizing that management options are constrained under higher emission scenarios. ConclusionThe influence of humans on wildfire regimes has increased over the last two centuries. The perspective gained from past fires should be considered in land and fire management strategies, but novel fire behavior is likely given the unprecedented human disruption of plant communities, climate, and other factors. Future fire regimes are likely to degrade key ecosystem services, unless climate change is aggressively mitigated. Expert assessment complements empirical data and modeling, providing a broader perspective of fire science to inform decision making and future research priorities. 
                        more » 
                        « less   
                    
                            
                            Terrestrial carbon dynamics in an era of increasing wildfire
                        
                    
    
            In an increasingly flammable world, wildfire is altering the terrestrial carbon balance. However, the degree to which novel wildfire regimes disrupt biological function remains unclear. Here, we synthesize the current understanding of above- and belowground processes that govern carbon loss and recovery across diverse ecosystems. We find that intensifying wildfire regimes are increasingly exceeding biological thresholds of resilience, causing ecosystems to convert to a lower carbon-carrying capacity. Growing evidence suggests that plants compensate for fire damage by allocating carbon belowground to access nutrients released by fire, while wildfire selects for microbial communities with rapid growth rates and the ability to metabolize pyrolysed carbon. Determining controls on carbon dynamics following wildfire requires integration of experimental and modelling frameworks across scales and ecosystems. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10480673
- Publisher / Repository:
- Nature Climate Change
- Date Published:
- Journal Name:
- Nature Climate Change
- Volume:
- 13
- Issue:
- 12
- ISSN:
- 1758-678X
- Page Range / eLocation ID:
- 1306 to 1316
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Fire is a powerful ecological and evolutionary force that regulates organismal traits, population sizes, species interactions, community composition, carbon and nutrient cycling and ecosystem function. It also presents a rapidly growing societal challenge, due to both increasingly destructive wildfires and fire exclusion in fire‐dependent ecosystems. As an ecological process, fire integrates complex feedbacks among biological, social and geophysical processes, requiring coordination across several fields and scales of study.Here, we describe the diversity of ways in which fire operates as a fundamental ecological and evolutionary process on Earth. We explore research priorities in six categories of fire ecology: (a) characteristics of fire regimes, (b) changing fire regimes, (c) fire effects on above‐ground ecology, (d) fire effects on below‐ground ecology, (e) fire behaviour and (f) fire ecology modelling.We identify three emergent themes: the need to study fire across temporal scales, to assess the mechanisms underlying a variety of ecological feedbacks involving fire and to improve representation of fire in a range of modelling contexts.Synthesis: As fire regimes and our relationships with fire continue to change, prioritizing these research areas will facilitate understanding of the ecological causes and consequences of future fires and rethinking fire management alternatives.more » « less
- 
            Abstract Fire has transformative effects on soil biological, chemical, and physical properties in terrestrial ecosystems around the world. While methods for estimating fire characteristics and associated effects aboveground have progressed in recent decades, there remain major challenges in characterizing soil heating and associated effects belowground. Overcoming these challenges is crucial for understanding how fire influences soil carbon storage, biogeochemical cycling, and ecosystem recovery. In this paper, we present a novel framework for characterizing belowground heating and effects. The framework includes (1) an open‐source model to estimate fire‐driven soil heating, cooling, and the biotic effects of heating across depths and over time (Soil Heating in Fire model; SheFire) and (2) a simple field method for recording soil temperatures at multiple depths using self‐contained temperature sensor and data loggers (i.e., iButtons), installed along a wooden stake inserted into the soil (i.e., an iStake). The iStake overcomes many logistical challenges associated with obtaining temperature profiles using thermocouples. Heating measurements provide inputs to the SheFire model, and modeled soil heating can then be used to derive ecosystem response functions, such as heating effects on microorganisms and tissues. To validate SheFire estimates, we conducted a burn table experiment using iStakes to record temperatures that were in turn used to fit the SheFire model. We then compared SheFire predicted temperatures against measured temperatures at other soil depths. To benchmark iStake measurements against those recorded by thermocouples, we co‐located both types of sensors in the burn table experiment. We found that SheFire demonstrated skill in interpolating and extrapolating soil temperatures, with the largest errors occurring at the shallowest depths. We also found that iButton sensors are comparable to thermocouples for recording soil temperatures during fires. Finally, we present a case study using iStakes and SheFire to estimate in situ soil heating during a prescribed fire and demonstrate how observed heating regimes would influence seed and tree root vascular cambium survival at different soil depths. This measurement‐modeling framework provides a cutting‐edge approach for describing soil temperature regimes (i.e., soil heating) through a soil profile and predicting biological responses.more » « less
- 
            Climate change is intensifying the fire regime across Siberia, with the potential to alter carbon combustion and post‐fire carbon re‐accumulation trajectories. Few field‐based estimates of fire severity (e.g., carbon combustion and tree mortality) exist in Siberian larch forests (Larixspp.), which limits our ability to project how an intensified fire regime will affect regional and global climate feedbacks. Here, we present field‐based estimates of fire‐induced tree mortality and carbon loss in eastern Siberian larch forests. Our results suggest that fires in this region result in high tree mortality (means of 83% and 76% at Arctic and subarctic sites, respectively). In both absolute and relative terms, aboveground carbon loss following fire is higher in Siberian larch forests than in North America, but belowground carbon loss is considerably lower. This suggests fundamental differences in wildfire behavior and carbon dynamics between dominant vegetation types across the boreal biome.more » « less
- 
            Delays in peak physiological activity may reduce resource acquisition as trees recover from wildfireAbstract Few studies have investigated how mature trees recover physiologically from wildfire damage, and none have comprehensively linked tree hydraulics with belowground function. Uncovering mechanistic links between rates of above‐ and belowground recovery is necessary for improving predictions of forest resilience and carbon dynamics following wildfire. We coupled continuous measurements of tree water flow and soil CO2efflux with detailed physiological measurements of above‐ and belowground function following a mixed‐severity wildfire. We found that maturePinus ponderosatrees with up to 85% canopy and stem damage resumed physiological functioning by the second growing season post‐fire. However, these trees also exhibited delayed peak water uptake (relative to less‐burned trees) that coincided with summer heat and drought. Our results suggest fire damage may prevent the critical timing in which peak physiological function overlaps with optimal growing conditions (e.g., moisture and nutrient availability). As a result, we suggest the degree of root and microbial damage should be assessed along with observed aboveground damage to more effectively predict tree recovery potential. While significantly damaged trees resumed typical hydraulic function within two years, observed delays in peak water uptake could require higher water and nutrient use efficiency to maintain carbon sequestration rates.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    