skip to main content


This content will become publicly available on December 6, 2024

Title: Championing awareness of the opioid epidemic through a service-learning module for non-STEM biology majors

Over 50,000 people die annually from opioid overdoses in the United States leading to what has become known as the “opioid epidemic.” This is of heightened concern in states like Alabama that experience higher rates of overall drug use and overdose deaths. Thus, it is increasingly important for college students in Alabama to learn about how the opioid epidemic is affecting their communities. Previous studies have demonstrated that engaging non-majors in innovative active-learning oriented pedagogies like service-learning can enhance their understanding and awareness about contemporary societal issues. Despite its pedagogical potential, the impact of opioid-related service-learning, particularly for non-majors, continues to remain unexplored. In this study, we describe the implementation of a service-learning module centered on opioid addiction. Students in a non-major biology course learned the science behind opioids, had Naloxone training, and engaged in active discussions with an opioid researcher, physician, and former illicit opioid user. Our assessment of the thematic analysis of pre- and post-reflection free-write data from 87 consenting students revealed 10 categories that students reported in the post- but not pre-reflections (essay gain), pre- and post-reflections (neutral), and pre- but not post-reflections (essay loss). We found essay gains in students humanizing addiction and awareness of the cultural context of opioid addiction and essay losses from students indicating that non-major students had a low level of awareness related to these issues. Eight one-on-one, semi-structured interviews revealed that students were personally impacted by the epidemic and valued its curricular inclusion. Our data supports that service-learning can increase non-major biology student’s awareness and contextual understanding about the opioid epidemic, enabling much-needed advocacy to further enhance its awareness among the public.

 
more » « less
Award ID(s):
1826988
NSF-PAR ID:
10480694
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Frontiers in Education
Date Published:
Journal Name:
Frontiers in Education
Volume:
8
ISSN:
2504-284X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. National efforts to reform undergraduate education have highlighted the need to relate abstract concepts in biology to real-world examples, especially for non-majors who may undervalue scientific processes. We therefore decided to introduce a module titled “Climate Change, Sustainable Practices and Plastic Pollution,” utilizing such high-impact practices as service-learning. This module involved connecting the course objectives with three hours of community service. Our mixed-methods approach across two different course iterations (n=117) indicated that at the end of the course, non-majors were significantly more likely to agree with all the statements on an open-ended pre- and post-survey about civic engagement and sustainable practices, as adapted from Dauer and Forbes (2016). Focus group and free response data confirmed that students valued service-learning and connected the experience to both learning objectives and their everyday lives. We therefore recommend service-learning as an active engagement tool to teach concepts related to global climate change and environmental pollution. 
    more » « less
  2. There are significant disparities between the conferring of science, technology, engineering, and mathematics (STEM) bachelor’s degrees to minoritized groups and the number of STEM faculty that represent minoritized groups at four-year predominantly White institutions (PWIs). Studies show that as of 2019, African American faculty at PWIs have increased by only 2.3% in the last 20 years. This study explores the ways in which this imbalance affects minoritized students in engineering majors. Our research objective is to describe the ways in which African American students navigate their way to success in an engineering program at a PWI where the minoritized faculty representation is less than 10%. In this study, we define success as completion of an undergraduate degree and matriculation into a Ph.D. program. Research shows that African American students struggle with feeling like the “outsider within” in graduate programs and that the engineering culture can permeate from undergraduate to graduate programs. We address our research objective by conducting interviews using navigational capital as our theoretical framework, which can be defined as resilience, academic invulnerability, and skills. These three concepts come together to denote the journey of an individual as they achieve success in an environment not created with them in mind. Navigational capital has been applied in education contexts to study minoritized groups, and specifically in engineering education to study the persistence of students of color. Research on navigational capital often focuses on how participants acquire resources from others. There is a limited focus on the experience of the student as the individual agent exercising their own navigational capital. Drawing from and adapting the framework of navigational capital, this study provides rich descriptions of the lived experiences of African American students in an engineering program at a PWI as they navigated their way to academic success in a system that was not designed with them in mind. This pilot study took place at a research-intensive, land grant PWI in the southeastern United States. We recruited two students who identify as African American and are in the first year of their Ph.D. program in an engineering major. Our interview protocol was adapted from a related study about student motivation, identity, and sense of belonging in engineering. After transcribing interviews with these participants, we began our qualitative analysis with a priori coding, drawing from the framework of navigational capital, to identify the experiences, connections, involvement, and resources the participants tapped into as they maneuvered their way to success in an undergraduate engineering program at a PWI. To identify other aspects of the participants’ experiences that were not reflected in that framework, we also used open coding. The results showed that the participants tapped into their navigational capital when they used experiences, connections, involvement, and resources to be resilient, academically invulnerable, and skillful. They learned from experiences (theirs or others’), capitalized on their connections, positioned themselves through involvement, and used their resources to achieve success in their engineering program. The participants identified their experiences, connections, and involvement. For example, one participant who came from a blended family (African American and White) drew from the experiences she had with her blended family. Her experiences helped her to understand the cultures of Black and White people. She was able to turn that into a skill to connect with others at her PWI. The point at which she took her familial experiences to use as a skill to maneuver her way to success at a PWI was an example of her navigational capital. Another participant capitalized on his connections to develop academic invulnerability. He was able to build his connections by making meaningful relationships with his classmates. He knew the importance of having reliable people to be there for him when he encountered a topic he did not understand. He cultivated an environment through relationships with classmates that set him up to achieve academic invulnerability in his classes. The participants spoke least about how they used their resources. The few mentions of resources were not distinct enough to make any substantial connection to the factors that denote navigational capital. The participants spoke explicitly about the PWI culture in their engineering department. From open coding, we identified the theme that participants did not expect to have role models in their major that looked like them and went into their undergraduate experience with the understanding that they will be the distinct minority in their classes. They did not make notable mention of how a lack of minority faculty affected their success. Upon acceptance, they took on the challenge of being a racial minority in exchange for a well-recognized degree they felt would have more value compared to engineering programs at other universities. They identified ways they maneuvered around their expectation that they would not have representative role models through their use of navigational capital. Integrating knowledge from the framework of navigational capital and its existing applications in engineering and education allows us the opportunity to learn from African American students that have succeeded in engineering programs with low minority faculty representation. The future directions of this work are to outline strategies that could enhance the path of minoritized engineering students towards success and to lay a foundation for understanding the use of navigational capital by minoritized students in engineering at PWIs. Students at PWIs can benefit from understanding their own navigational capital to help them identify ways to successfully navigate educational institutions. Students’ awareness of their capacity to maintain high levels of achievement, their connections to networks that facilitate navigation, and their ability to draw from experiences to enhance resilience provide them with the agency to unleash the invisible factors of their potential to be innovators in their collegiate and work environments. 
    more » « less
  3. null (Ed.)
    [ABSTRACT] Educators need to create an informed scientifically aware citizenry, especially in the era of the COVID-19 pandemic, where public health measures have focused on increasing adoption of safe behaviors for reducing the transmission of COVID-19. Non-major science students make up an important, yet understudied, part of our public, given that they constitute tomorrow’s voters, workers, consumers, and policy-makers. Expecting that non-majors may benefit from a module connecting COVID-19 to community education, we implemented a novel E-service-learning module in light of the transition from an in-person course to an online platform. Our 4-week module included expert-led lectures, assigned digital infographics about COVID-19 safety precautions, and a required post-reflection assignment summarizing their learning gains. Out of 112 enrolled students, 87 consented to have their reflections analyzed and 8 students chose to participate in additional one-on-one online interviews. In an effort to determine which parts of our module garnered the most student commentary, we grouped post-reflection and interview data into four categories: service-learning infographic, service-learning guest lectures, information on COVID-19, and the broader implications of COVID-19. While 13% of students explicitly referenced infographics in their reflections, a far greater proportion (37%) explicitly referenced learning gains related to the expert-led lectures. Based on these findings, we encourage other educators to continue to explore the impact of E-service-learning content and assignments to help maximize learning in an online classroom environment during the COVID-19 pandemic and beyond. 
    more » « less
  4. Understanding the relationship between science and society is included as a core competency for biology students in the United States. However, traditional undergraduate biology instruction emphasizes scientific practice and generally avoids potentially controversial issues at the intersection of science and society, such as representation in STEM, historical unethical research experiments, biology of sex and gender, and environmental justice. As calls grow to highlight this core competency, it is critical we investigate the impact of including these topics in undergraduate biology education. Here, we implemented a semester-long ideological awareness curriculum that emphasized biases, stereotypes, and assumptions that have shaped historical and contemporary science. We taught this curriculum to one section of a non-majors introductory biology course and compared the outcomes to a section of the same course taught using traditional biology content (hereafter the ‘traditional’ section) that did not emphasize societal topics. Both sections of students created concept maps for their final exam, which we coded for ‘society’ and ‘biology’ content. We then assessed (1) the amount of societal content included in the concept maps, and (2) which societal topics were mentioned in each section. We found that students in the ideologically aware section included more societal content in their concept maps than the students in the traditional section. Students exposed to the ideological awareness modules often mentioned the topics covered in those modules, whereas students in the traditional section most commonly mentioned faulty scientific information such as pseudoscience or non-credible research, which was emphasized in the first chapter of the required text-book for both sections. Our results show students who were not engaged in activities about ideological awareness in biology had fewer notions of how society impacts science at the end of the semester. These findings highlight the importance of intentionally teaching students the bidirectional impacts of science and society. 
    more » « less
  5. Couch, Brian (Ed.)
    There is a national need to recruit more science teachers. Enhancing pathways to teaching for science, technology, engineering, and mathematics (STEM) majors could help to address this need. The Learn By Doing Lab is a course in which STEM undergraduates teach hands-on life science and physical science to local third- through eighth-grade schoolchildren visiting the campus. To measure the impacts of this teaching experience on the undergraduate participants, we administered a version of the Science Teaching Efficacy Belief Instrument-Preservice survey at the start and end of the course. Significant gains were observed in the students’ belief in their personal ability to effectively teach science (self-efficacy). Furthermore, qualitative and quantitative analysis of student reflections revealed that they perceived the Learn By Doing Lab experience to have helped them develop 21st-century competencies, particularly in the areas of collaboration, communication, and adaptability. Finally, the students’ overall awareness and positive perception of science teaching careers increased. This indicates that providing a low-barrier course-based teaching experience for STEM undergraduates is a promising strategy to help recruit pre-service teachers, and a step toward alleviating the national STEM teacher shortage. 
    more » « less