Abstract Cancer is a global health problem that needs effective treatment strategies. Conventional treatments for solid-tumor cancers are unsatisfactory because they cause unintended harm to healthy tissues and are susceptible to cancer cell resistance. Nanoparticle-mediated photothermal therapy is a minimally invasive treatment for solid-tumor cancers that has immense promise as a standalone therapy or adjuvant to other treatments like chemotherapy, immunotherapy, or radiotherapy. To maximize the success of photothermal therapy, light-responsive nanoparticles can be camouflaged with cell membranes to endow them with unique biointerfacing capabilities that reduce opsonization, prolong systemic circulation, and improve tumor delivery through enhanced passive accumulation or homotypic targeting. This ensures a sufficient dose of photoresponsive nanoparticles arrives at tumor sites to enable their complete thermal ablation. This review summarizes the state-of-the-art in cell membrane camouflaged nanoparticles for photothermal cancer therapy and provides insights to the path forward for clinical translation. 
                        more » 
                        « less   
                    
                            
                            Indocyanine Green‐Glycogen Conjugates for Near‐Infrared‐Triggered Photothermal Cancer Therapy
                        
                    
    
            Abstract Photothermal reagents sensitive to near‐infrared (NIR) light are promising imaging agents and therapeutics for anticancer applications because of the deep tissue penetration of NIR light, allowing for spatiotemporal control over the therapeutic activity, with minimal damage to normal tissues. Herein, a new class of NIR‐sensitive biopolymer‐based nanoparticles is presented by covalently conjugating indocyanine green (ICG) onto the surface of naturally occurring glycogen nanoparticles. The resulting ICG‐glycogen conjugates exhibit a markedly enhanced aqueous stability in comparison to free ICG molecules. Furthermore, an efficient light‐to‐heat conversion is enabled by ICG‐glycogen conjugates, as evidenced by the elevated temperatures of their aqueous solutions upon exposure to NIR light. Critically, ICG‐glycogen conjugates are capable of cell internalization, and under NIR irradiation the effective eradication of breast cancer cells, demonstrating their potential in photothermal therapy for cancer. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2229274
- PAR ID:
- 10480724
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Macromolecular Chemistry and Physics
- Volume:
- 224
- Issue:
- 24
- ISSN:
- 1022-1352
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract The elevated glutathione (GSH) level in solid tumors has been used as a major hallmark for GSH‐responsive nanoparticles to enhance targeting efficiency and specificity. Meanwhile, GSH is mainly synthesized inside the hepatocytes of the liver in the body and constantly released into the blood through hepatic GSH efflux to regulate redox potential of the entire body. However, it remains largely unknown how this hepatic GSH efflux affects the tumor targeting of GSH‐responsive nanoparticles. Herein, we report that depletion of hepatic GSH enhanced the tumor targeting of GSH‐responsive indocyanine green‐conjugated Au25nanoclusters coated with 18 GSH ligand (ICG‐Au25SG18). The dissociation of ICG from Au25SG18by the hepatic GSH through thiol‐exchange reaction and the subsequent hepatobiliary clearance of the detached ICG were slowed down by GSH depletion, which in turn prolonged the blood circulation of intact ICG‐Au25SG18and enhanced its tumor targeting. Our work highlights glutathione‐mediated crosstalk between the liver and tumor, in addition to well‐known Kupffer cell‐mediated uptake, in the tumor targeting of engineered nanoparticles, which could be modulated to enhance targeting efficiency and specificity of cancer nanomedicines while reducing their nonspecific accumulation.more » « less
- 
            Abstract The photothermal effect in nanomaterials, resulting from resonant optical absorption, finds wide applications in biomedicine, cancer therapy, and microscopy. Despite its prevalence, the photothermal effect in light-absorbing nanoparticles has typically been assessed using bulk measurements, neglecting near-field effects. Beyond standard imaging and therapeutic uses, nanosecond-transient photothermal effects have been harnessed for bacterial inactivation, neural stimulation, drug delivery, and chemical synthesis. While scanning probe microscopy and electron microscopy offer single-particle imaging of photothermal fields, their slow speed limits observations to milliseconds or seconds, preventing nanoscale dynamic investigations. Here, we introduce decoupled optical force nanoscopy (Dofn), enabling nanometer-scale mapping of photothermal forces by exploiting unique phase responses to temporal modulation. We employ the photothermal effect’s back-action to distinguish various time frames within a modulation period. This allows us to capture the dynamic photothermal process of a single gold nanorod in the nanosecond range, providing insights into non-stationary thermal diffusion at the nanoscale.more » « less
- 
            In this Letter a novel, to our knowledge, approach for near-infrared (NIR) fluorescence portable confocal microscopy is introduced, aiming to enhance fluorescence imaging of biological samples in the NIR-II window. By integrating a superconducting nanowire single-photon detector (SNSPD) into a confocal microscopy, we have significantly leveraged the detection efficiency of the NIR-II fluorescence signal from indocyanine green (ICG), an FDA-approved dye known for its NIR-II fluorescence capabilities. The SNSPD, characterized by its extremely low dark count rate and optimized NIR system detection efficiency, enables the excitation of ICG with 1 mW and the capture of low-light fluorescence signals from deep regions (up to 512 µm). Consequently, our technique was able to produce high-resolution images of bio samples with a superior signal-to-noise ratio, making a substantial advancement in the field of fluorescence microscopy and offering a promising opportunity for future clinical study.more » « less
- 
            Nanoparticle-based imaging agents have gained massive attention for the targeted imaging of early-stage cancer. Among these, organic dye-entrapped/assembled nanoparticles have been recognized as potential imaging agents. However, they are limited by poor brightness, low stability, low reproducibil-ity and scalability, and selective surface engineering, which limits their translational potential. The mo-lecular assembly of amphiphilic precursor molecules and the chosen fluorophore can augment the brightness and stability of engineered nanoimaging agents. Herein, we describe an original engineering method for cancer cell membrane-covered ICG-cellulose acetate nanospheres (180 nm) as biomimetic ultra-bright nanoimaging agents for cancer cell imaging. The targeted cancer cell imaging is compared with folic acid-attached ICG-cellulose acetate nanospheres. Encapsulation of fluorescent organic mole-cules (660 dye molecules/ per nanoparticle) in the core of a polymeric network enhances the overall brightness and long-term photostability due to the entrapment of the loaded fluorescent cargo and poor permeation of oxygen to oxidize the dye. The amphiphilic nature of the selected polymeric network accommodates both hydrophilic and hydrophobic cargo molecules (e.g., imaging and therapeutics). The engineered fluorescent nanoparticles exhibited high brightness (780-980 MESF), uniform particle size distribution (180-240 nm), high stability (tested up to 90 days), good biocompatibility with normal cells (95 %), and high scalability (600 mL/batch). For targeted chemotherapeutics, DOX-loaded bio-mimetic nanoparticles demonstrate better chemotherapeutic response (more than 95 % cancer cell death) than folic acid-attached DOX-loaded nanoparticles (78 % cancer cell death) as identified with 24 h MTT assay. The engineered nanoparticles exhibited cancer cell imaging and therapeutics capabili-ties by delivering imaging and drug molecules in cancer mimicked environment in vitro. Our findings suggest that the engineered nanoparticles not only overcome the limitations of nano-imaging but also provide additional advantages for targeted cancer therapeutics.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
