skip to main content

Title: Major southern San Andreas earthquakes modulated by lake-filling events
Hydrologic loads can stimulate seismicity in the Earth’s crust1. However, evidence for the triggering of large earthquakes remains elusive. The southern San Andreas Fault (SSAF) in Southern California lies next to the Salton Sea2, a remnant of ancient Lake Cahuilla that periodically filled and desiccated over the past millennium3,4,5. Here we use new geologic and palaeoseismic data to demonstrate that the past six major earthquakes on the SSAF probably occurred during highstands of Lake Cahuilla5,6. To investigate possible causal relationships, we computed time-dependent Coulomb stress changes7,8 due to variations in the lake level. Using a fully coupled model of a poroelastic crust9,10,11 overlying a viscoelastic mantle12,13, we find that hydrologic loads increased Coulomb stress on the SSAF by several hundred kilopascals and fault-stressing rates by more than a factor of 2, which is probably sufficient for earthquake triggering7,8. The destabilizing effects of lake inundation are enhanced by a nonvertical fault dip14,15,16,17, the presence of a fault damage zone18,19 and lateral pore-pressure diffusion20,21. Our model may be applicable to other regions in which hydrologic loading, either natural8,22 or anthropogenic1,23, was associated with substantial seismicity.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Springer Nature
Date Published:
Journal Name:
Page Range / eLocation ID:
761 to 766
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The Southern San Andreas Fault (SSAF) in California is one of the most thoroughly studied faults in the world, but its configuration at seismogenic depths remains enigmatic in the Coachella Valley. We use a combination of space geodetic and seismic observations to demonstrate that the relatively straight southernmost section of the SSAF, between Thousand Palms and Bombay Beach, is dipping to the northeast at 60–80° throughout the upper crust (<10 km), including the shallow aseismic layer. We constrain the fault attitude in the top 2–3 km using inversions of surface displacements associated with shallow creep, and seismic data from a dense nodal array crossing the fault trace near Thousand Palms. The data inversions show that the shallow dipping structure connects with clusters of seismicity at depth, indicating a continuous throughgoing fault surface. The dipping fault geometry has important implications for the long‐term fault slip rate, the intensity of ground shaking during future large earthquakes, and the effective strength of the southern SAF.

    more » « less
  2. Abstract

    In this paper we investigate the dynamic behavior of a system of interconnected faults in the Brawley Seismic Zone (BSZ) in southern California. The system of faults includes the southern San Andreas Fault (SSAF), the Imperial Fault (IF), and a set of cross faults in the BSZ that may serve as connecting structures between the two larger faults. Geological and seismic evidence imply that the SSAF and IF may have buried extensions that link them together in a large‐scale step over, with the cross faults in the BSZ cutting between them. Such a configuration poses the question of whether through‐going rupture across the step over is possible in this region, leading to large, plate‐boundary scale earthquakes. We investigate potential earthquakes in this region through 3‐D dynamic finite element spontaneous rupture modeling. We find that under multiple assumptions about fault stress and fault geometry, through‐going rupture is possible, both from north to south and south to north. Participation of the cross faults is facilitated by two factors: absence of rupture on one of the main two faults and a contrast in prestress between the main faults and the cross faults, leading to slow propagation speed on the main faults while maintaining ease of failure on the cross faults. The pattern of rupture propagation and slip is strongly affected by fault‐to‐fault dynamic stress interactions during the rupture process. The results may have implications for both potential earthquakes in this region, as well as for understanding the dynamics of geometrically complex/branched faults in general.

    more » « less
  3. Abstract We first explore a series of retrospective earthquake interactions in southern California. We find that the four Mw≥7 shocks in the past 150 yr brought the Ridgecrest fault ∼1  bar closer to failure. Examining the 34 hr time span between the Mw 6.4 and Mw 7.1 events, we calculate that the Mw 6.4 event brought the hypocentral region of the Mw 7.1 earthquake 0.7 bars closer to failure, with the Mw 7.1 event relieving most of the surrounding stress that was imparted by the first. We also find that the Mw 6.4 cross-fault aftershocks shut down when they fell under the stress shadow of the Mw 7.1. Together, the Ridgecrest mainshocks brought a 120 km long portion of the Garlock fault from 0.2 to 10 bars closer to failure. These results motivate our introduction of forecasts of future seismicity. Most attempts to forecast aftershocks use statistical decay models or Coulomb stress transfer. Statistical approaches require simplifying assumptions about the spatial distribution of aftershocks and their decay; Coulomb models make simplifying assumptions about the geometry of the surrounding faults, which we seek here to remove. We perform a rate–state implementation of the Coulomb stress change on focal mechanisms to capture fault complexity. After tuning the model through a learning period to improve its forecast ability, we make retrospective forecasts to assess model’s predictive ability. Our forecast for the next 12 months yields a 2.3% chance of an Mw≥7.5 Garlock fault rupture. If such a rupture occurred and reached within 45 km of the San Andreas, we calculate it would raise the probability of a San Andreas rupture on the Mojave section by a factor of 150. We therefore estimate the net chance of large San Andreas earthquake in the next 12 months to be 1.15%, or about three to five times its background probability. 
    more » « less
  4. Abstract

    Dynamic triggering of earthquakes has been reported at various fault systems. The triggered earthquakes are thought to be caused either directly by dynamic stress changes due to the passing seismic waves, or indirectly by other nonlinear processes that are initiated by the passing waves. Distinguishing these physical mechanisms is difficult because of the general lack of high‐resolution earthquake catalogs and robust means to quantitatively evaluate triggering responses, particularly, delayed responses. Here we use the high‐resolution Quake Template Matching catalog in Southern California to systematically evaluate teleseismic dynamic triggering patterns in the San Jacinto Fault Zone and the Salton Sea Geothermal Field from 2008 to 2017. We develop a new statistical approach to identify triggered cases, finding that approximately 1 out of every 5 globalMw ≥ 6 earthquakes dynamically trigger microearthquakes in Southern California. The triggering responses include both instantaneous and delayed triggering, showing a highly heterogeneous pattern and indicating possible evolving triggering thresholds. We do not observe a clear peak ground velocity triggering threshold that can differentiate triggering earthquakes from nontriggering events, but there are subtle differences in the frequency content of the ground motion that may differentiate the earthquakes. In contrast to the depth distribution of background seismicity, the identified triggered earthquakes tend to concentrate at the edges of the seismogenic zones. Although instantaneously triggered earthquakes are likely a result of dynamic Coulomb stress changes, the cases of delayed‐dynamic triggering are best explained by nonlinear triggering processes, including cyclic material fatigue, accelerated transient creep, and stochastic frictional heterogeneities.

    more » « less
  5. Abstract

    The 1976 Great Tangshan earthquake (Ms7.8) in North China was the deadliest earthquake in the past century. Understandably, a sequence of moderate (M ≥ 4.5) earthquakes in recent years in the Tangshan region, including theMs5.1 earthquake on July 12, 2020, raised much social concern and scientific debate about the seismic risk near Tangshan and in North China, a region of active intraplate seismicity. Are these recent events aftershocks of the 1976 Great Tangshan earthquake or are they background earthquakes? Here, we separated clustered events (i.e., aftershocks) from background earthquakes in Tangshan and the entire North China using the nearest‐neighbor (NN) method, and estimated the duration of the 1976 Tangshan aftershock sequence by fitting the decay of seismicity with respect to the background seismicity. Our results suggest that the recent moderate earthquakes are likely aftershocks. This is consistent with their occurrences in places of increased Coulomb failure stress due to the 1976 Great Tangshan earthquake. The estimated aftershock duration is around 65–100 years for the 1976 Great Tangshan earthquake. The background seismicity in North China, obtained by removing aftershocks identified by the NN method, is relatively stationary in space but varies in time, decreasing slightly in recent years. Major active tectonic zones, including the Shanxi Rift and the Zhangjiakou‐Penglai fault system, show correlation between relatively high background seismicity, high geodetic strain rates, and large historic earthquakes. Such correlation, however, is poor within the North China Plain, highlighting the complexity of intraplate earthquakes.

    more » « less