skip to main content


Title: Amazonian mixed‐species flocks demonstrate flexible preferences for vertical forest structure
Abstract

How species interact with human‐disturbed environments is a central focus of conservation biology. Within disturbed landscapes, regenerating forests have potential to provide habitat for forest species, especially as increasing amounts of primary forest are lost. As secondary forest regenerates beside primary forest, it increases habitat heterogeneity. However, relatively little is known about the influence of habitat heterogeneity on space use. In this study, we analyzed the topography and vertical vegetation structure of regenerating forest, small forest fragments, and undisturbed rainforest in the central Amazon to determine (1) how these structural characteristics influence understory mixed‐species flock space use and (2) how the vegetative preferences of flocks varied across a disturbance gradient. We first used behavioral observations to quantify the vertical foraging niche of flocks and then associated variation in horizontal space use with the three‐dimensional features of forest structure. Surprisingly, we found that flock space use was not consistently associated with any variable, even though available habitat differed both within and across forest types. Overall, the best predictors were elevation and leaf area density within the subcanopy (16–25 m), yet most flock foraging occurred in the midstory (6–15 m). Together, these results indicate that while flocks may have certain habitat preferences, these preferences are flexible or idiosyncratic and do not correspond to a specific vertical profile. For example, flocks spent a disproportionate amount of time in low elevations when available, but not all flocks had access to low‐lying areas within their home ranges. Although other studies show flock size and diversity can be highly sensitive to habitat disturbance, mixed‐species flocks demonstrate remarkable plasticity as a unit, virtually saturating undisturbed and disturbed forest at our site, as long as regeneration has passed a certain threshold.

 
more » « less
NSF-PAR ID:
10480827
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecosphere
Volume:
14
Issue:
12
ISSN:
2150-8925
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Background Previous research has shown diverse vertical space use by various taxa, highlighting the importance of forest vertical structure. Yet, we know little about vertical space use of tropical forests, and we often fail to explore how this three-dimensional space use changes over time. Methods Here we use canopy tower systems in French Guiana and passive acoustic monitoring to measure Neotropical bat activity above and below the forest canopy throughout nine nights. We use a Bayesian generalized linear mixed effect model and kernel density estimates to demonstrate patterns in space-use over time. Results We found that different bats use both canopy and understory space differently and that these patterns change throughout the night. Overall, bats were more active above the canopy (including Cormura brevirostris, Molossus molossus, Peropteryx kappleri and Peropteryx macrotis ), but multiple species or acoustic complexes (when species identification was impossible) were more active in the understory (such as Centronycteris maximiliani, Myotis riparius, Pteronotus alitonus and Pteronotus rubiginosus ). We also found that most bats showed temporally-changing preferences in hourly activity. Some species were less active (e.g., P. kappleri and P. macrotis ), whereas others were more active ( Pteronotus gymnonotus, C. brevirostris , and M. molossus ) on nights with higher moon illuminance. Discussion Here we show that Neotropical bats use habitat above the forest canopy and within the forest understory differently throughout the night. While bats generally were more active above the forest canopy, we show that individual groups of bats use space differently over the course of a night, and some prefer the understory. This work highlights the need to consider diel cycles in studies of space use, as animals use different habitats during different periods of the day. 
    more » « less
  2. Abstract

    Forests play an integral role in the terrestrial water cycle and link exchanges of water between the land surface and the atmosphere. To examine the effects of an intermediate disturbance on forest water cycling, we compared vertical profiles of stable water vapor isotopes in two closely located forest sites in northern lower Michigan. At one site, all canopy‐dominant early successional species were stem girdled to induce mortality and accelerate senescence. At both sites, we measured the isotopic composition of atmospheric water vapor at six heights during three seasons (spring, summer, and fall) and paired vertical isotope profiles with local meteorology and sap flux. Disturbance had a substantial impact on local water cycling. The undisturbed canopy was moister, retained more transpired vapor, and at times was poorly mixed with the free atmosphere above the canopy. Differences between the disturbed and undisturbed sites were most pronounced in the summer when transpiration was high. Differences in forest structure at the two sites also led to more isotopically stratified vapor within the undisturbed canopy. Our findings suggest that intermediate disturbance may increase mixing between the surface layer and above‐canopy atmosphere and alter ecosystem‐atmosphere gas exchange.

     
    more » « less
  3. ABSTRACT

    Tropical forests harbour the highest levels of terrestrial biodiversity and represent some of the most complex ecosystems on Earth, with a significant portion of this diversity above ground. Although the vertical dimension is a central aspect of the ecology of forest communities, there is little consensus as to prominence, evenness, and consistency of community‐level stratification from ground to canopy. Here, we gather the results of 62 studies across the tropics to synthesise and assess broad patterns of vertical stratification of abundance and richness in vertebrates, the best studied taxonomic group for which results have not been collated previously. Our review of the literature yielded sufficient data for bats, small mammals, birds and amphibians. We show that variation in the stratification of abundance and richness exists within and among all taxa considered. Bat richness stratification was variable among studies, although bat abundance was weighted towards the canopy. Both bird richness and abundance stratification were variable, with no overriding pattern. On the contrary, both amphibians and small mammals showed consistent patterns of decline in abundance and richness towards the canopy. We descriptively characterise research trends in drivers of stratification cited or investigated within studies, finding local habitat structure and food distribution/foraging to be the most commonly attributed drivers. Further, we analyse the influence of macroecological variables on stratification patterns, finding latitude and elevation to be key predictors of bird stratification in particular. Prominent differences among taxa are likely due to taxon‐specific interactions with local drivers such as vertical habitat structure, food distribution, and vertical climate gradients, which may vary considerably across macroecological gradients such as elevation and biogeographic realm. Our study showcases the complexity with which animal communities organise within tropical forest ecosystems, while demonstrating the canopy as a critical niche space for tropical vertebrates, thereby highlighting the inherent vulnerability of tropical vertebrate communities to forest loss and canopy disturbance. We recognise that analyses were constrained due to variation in study designs and methods which produced a variety of abundance and richness metrics recorded across different arrangements of vertical strata. We therefore suggest the application of best practices for data reporting and highlight the significant effort required to fill research gaps in terms of under‐sampled regions, taxa, and environments.

     
    more » « less
  4. Abstract

    Avian mixed-species flocks are ubiquitous across habitats and a model for studying how heterospecific sociality influences the behavior and composition of animal communities. Here, we review the literature on mixed-species flocks and argue that a renewed focus on individual-level interactions among flock members can transform our understanding of this iconic, avian social system. Specifically, we suggest that an individual perspective will further our understanding of (1) how inter- and intraspecific variation in flock participation links to fitness costs and benefits, (2) the implications of familiarity between individuals in structuring mixed-species flock communities, and (3) how social roles within mixed-species flocks are related to social behavior within and across species. We summarize studies that use an individual perspective in each of these areas and discuss knowledge from conspecific social behavior to posit more broadly how individuals may shape mixed-species flocks. We encourage research approaches that incorporate individual variation in traits, relationships, and social roles in their assessment of mixed-species flocking dynamics. We propose that the analysis of individual variation in behavior will be particularly important for explicitly identifying fitness outcomes that led to the evolution of mixed-species flocks, which in turn affect community structure and resilience.

     
    more » « less
  5. Abstract

    Structurally complex forests optimize resources to assimilate carbon more effectively, leading to higher productivity. Information obtained from Light Detection and Ranging (LiDAR)‐derived canopy structural complexity (CSC) metrics across spatial scales serves as a powerful indicator of ecosystem‐scale functions such as gross primary productivity (GPP). However, our understanding of mechanistic links between forest structure and function, and the impact of disturbance on the relationship, is limited. Here, we paired eddy covariance measurements of carbon and water fluxes from nine forested sites within the 10 × 10 km CHEESEHEAD19 study domain in Northern Wisconsin, USA with drone LiDAR measurements of CSC to establish which CSC metrics were strong drivers of GPP, and tested potential mediators of the relationship. Mechanistic relationships were inspected at five resolutions (0.25, 2, 10, 25, and 50 m) to determine whether relationships persisted with scale. Vertical heterogeneity metrics were the most influential in predicting productivity for forests with a significant degree of heterogeneity in management, forest type, and species composition. CSC metrics included in the structure‐function relationship as well as driver strength was dependent on metric calculation resolution. The relationship was mediated by light use efficiency (LUE) and water use efficiency (WUE), with WUE being a stronger mediator and driver of GPP. These findings allow us to improve representation in ecosystem models of how CSC impacts light and water‐sensitive processes, and ultimately GPP. Improved models enhance our capacity to accurately simulate forest responses to management, furthering our ability to assess climate mitigation strategies.

     
    more » « less