skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Language Views for Scientific Sensemaking Matter: A Synthesis of Research on Multilingual Students’ Experiences with Science Practices Through a Translanguaging Lens
This synthesis examines recent science education research on multilingual students’ experiences with language-rich science practices. Adopting a translanguaging lens, we explore how researchers’ language conceptualizations impact the science practices they study and the ways multilingual students are positioned. This analysis helps us understand the extent to which recent research is disrupting, or sustaining, minoritizing narratives about multilingual students and how they sensemake in science. Based on our findings, we suggest researchers: (1) reflect upon and expand their views of language, which will enable the field to develop more nuanced understandings of how language use across linguistic and multimodal resources permeates all science practices, and (2) consider how to expand multilingual students’ language repertoires for sensemaking while also valuing students’ existing language resources and practices.  more » « less
Award ID(s):
1942912
PAR ID:
10480924
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Sage Publications
Date Published:
Journal Name:
Educational Researcher
Volume:
52
Issue:
9
ISSN:
0013-189X
Page Range / eLocation ID:
570 to 579
Subject(s) / Keyword(s):
multilingual students science practices sensemaking translanguaging equity
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Background/Context: Bi/multilingual students’ STEM learning is better supported when educators leverage their language and cultural practices as resources, but STEM subject divisions have been historically constructed based on oppressive, dominant values and exclude the ways of knowing of nondominant groups. Truly promoting equity requires expanding and transforming STEM disciplines. Purpose/Objective/Research Question/Focus of Study: This article contributes to efforts to illuminate emergent bi/multilingual students’ ways of knowing, languaging, and doing in STEM. We follow the development of syncretic literacies in relation to translanguaging practices, asking, How do knowledges and practices from different communities get combined and reorganized by students and teachers in service of new modeling practices? Setting and Participants: We focus on a seventh-grade science classroom, deliberately designed to support syncretic literacies and translanguaging practices, where computer science concepts were infused into the curriculum through modeling activities. The majority of the students in the bilingual program had arrived in the United States at most three years before enrolling, from the Caribbean and Central and South America. Research Design: We analyze one lesson that was part of a larger research–practice partnership focused on teaching computer science through leveraging translanguaging practices and syncretic literacies. The lesson was a modeling and computing activity codesigned by the teacher and two researchers about post–Hurricane María outmigration from Puerto Rico. Analysis used microethnographic methods to trace how students assembled translanguaging, social, and schooled practices to make sense of and construct models. Findings/Results: Findings show how students assembled representational forms from a variety of practices as part of accomplishing and negotiating both designed and emergent goals. These included sensemaking, constructing, explaining, justifying, and interpreting both the physical and computational models of migration. Conclusions/Recommendations: Implications support the development of theory and pedagogy that intentionally make space for students to engage in meaning-making through translanguaging and syncretic practices in order to provide new possibilities for lifting up STEM learning that may include, but is not constrained by, disciplinary learning. Additional implications for teacher education and student assessment practices call for reconceptualizing schooling beyond day-to-day curriculum as part of making an ontological shift away from prioritizing math, science, and CS disciplinary and language objectives as defined by and for schooling, and toward celebrating, supporting, and centering students’ diverse, syncretic knowledges and knowledge use. 
    more » « less
  2. Research in science education with multilingual learners (MLs) has expanded rapidly. This rapid expansion can be situated within a larger dialogue about what it means to provide minoritized students with an equitable education. Whereas some conceptions of equity focus on ensuring all students have access to the knowledge, practices, and language normatively valued in K‐12 schools (equity as access), increasingly prominent conceptions focus on transforming those knowledge, practices, and language in ways that center minoritized students and their communities (equity as transformation). In this article, we argue that conceptions of equity provide a useful lens for understanding emerging research in science education with MLs and for charting a research agenda. We begin by tracing how conceptions of equity have evolved in parallel across STEM and multilingual education. Then, we provide an overview of recent developments from demographic, theoretical, and policy perspectives. In the context of these developments, we provide a conceptual synthesis of emerging research by our team of early‐career scholars in three areas: (a) learning, (b) assessment, and (c) teacher education. Within each area, we unpack the research efforts in terms of how they attend to equity as access while pushing toward equity as transformation. Finally, we propose a research agenda for science education with MLs that builds on and extends these efforts. We close by offering recommendations for making this research agenda coherent and impactful: (a) being explicit about our conceptions of equity, (b) paying attention to the interplay of structure and agency, and (c) promoting interdisciplinary collaboration. 
    more » « less
  3. Abstract The Next Generation Science Standards (NGSS) provide a vision for contemporary science education with all students, including the fast‐growing population of multilingual learners in the United States K‐12 context. The shifts heralded by the NGSS have resulted in significant changes to English language proficiency (ELP) or English language development (ELD) standards so they better align with content standards and support all students, including multilingual learners, to engage in language‐rich disciplinary practices (e.g., arguing from evidence). The purpose of this article is to describe ELP/ELD standards aligned with content standards. Specifically, we describe how the policy initiatives of the NGSS as science standards and WIDA 2020 as ELP/ELD standards reflect each other in terms of conceptual foundations and architecture of the standards guiding classroom practices. By becoming more explicitly aware of how science standards and language standards present “mirror images” of each other, science educators will be better positioned to collaborate with their language education colleagues. As this article is intended to engage science educators who are generally familiar with the NGSS but likely new to ELP/ELD standards, we describe WIDA 2020 in detail and in ways accessible to a broad audience. In doing so, we aim to ensure the science education and language education communities are coordinated in their efforts to promote equitable science learning for all students, including multilingual learners. We close with implications for research, policy, and practice through collaboration between science education (as well as other content areas) and language education. 
    more » « less
  4. Research on TESOL materials development has focused primarily on instructional materials for contexts in which students are learning English separate from academic content (e.g., science, mathematics). This research could benefit from expansion given the increasing number of contexts in which students are learning content and English language simultaneously. In U.S. K–12 education specifically, a fast‐growing population of English learners (ELs) is expected to achieve academically rigorous content standards that reflect new ways of thinking about content, language, and their integration. Thus, developing instructional materials based on the standards has necessitated shifts from traditional to contemporary approaches. The purpose of this article is to illustrate how instructional materials for ELs in the content areas have evolved over time. After describing conceptual shifts in the fields of content area education and language education that underpin the evolution of instructional materials, the researchers present traditional and contemporary elementary science units. Then, they analyze the units in relation to key features of traditional and contemporary materials for ELs in the content areas. Finally, they discuss how materials development in content learning contexts could expand the scope of TESOL materials development by providing a fresh perspective on ongoing debates and tensions in this vibrant research area. 
    more » « less
  5. Abstract As the vision inA Framework for K‐12 Science Educationand the Next Generation Science Standards (NGSS) takes hold in schools and classrooms, there is an urgent need for teacher professional development (PD) programs that align with NGSS‐designed curriculum materials and address the unique strengths and needs of diverse student groups, including multilingual learners (MLs). The purpose of this article is to propose our conceptual framework for PD programs that aligns with current reform efforts and is grounded in the mutually supportive nature of contemporary science and language instructional shifts. Specifically, we examine our previous NGSS‐designed curriculum development project with MLs and review the literature in science education and language education with MLs. Our conceptual framework for PD programs is grounded in the perspective ofsymmetrythat teacher professional learning experiences should be symmetrical to the learning experiences we organize for students. Grounded in this perspective, our conceptual framework consists of three design principles that describe how PD programs can guide teachers to (a) develop an asset‐oriented view of MLs and instructional practices for recognizing and leveraging their assets, (b) integrate science and language in mutually supportive ways with MLs, and (c) develop more sophisticated instructional practices for integrating science and language with MLs over time. We describe contributions of our conceptual framework, which could generate a new research agenda and inform PD programs aimed at facilitating uptake of NGSS‐designed curriculum materials in linguistically diverse science classrooms. 
    more » « less