skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Star Formation on the Outer Edge of the Milky Way
The Outer Scutum-Centaurus spiral arm (OSC) is the outermost molecular spiral arm in the Galaxy and contains the most distant known high-mass star formation regions in the Milky Way. HII regions are the archetypical tracers of high-mass star formation, and because of their high luminosities, they can be seen across the entire Galactic disk from mid-infrared to radio wavelengths. We have detected HII regions at nearly 20 locations in the OSC, as far as 23.5 kpc from the Sun and 15 kpc from the Galactic center on the far side of the Galactic center. The far outer Galaxy has lower metallicity than the more inner regions of the Milky Way, with 12 + log(O/H) = 8.29 at the OSC versus 8.9 and 8.54 at the Galactic Center and the Solar neighborhood, respectively. Coupled with lower gas densities, star formation in the OSC could be similar to that of a much younger Milky Way or galaxies like the Large Magellanic Cloud. We find large reservoirs of diffuse and dense molecular gas (13CO, HCO+, HCN) in the OSC with the Argus array on the Green Bank Telescope (up to 105 Solar masses). We are also able to estimate the central ionizing sources from Very Large Array continuum observations, showing central stellar types as early as O4. Combined, these observations allow us to study chemical abundances and star formation efficiencies on the outer edge of the Milky Way, putting constraints on star formation properties towards the edge of the Galaxy’s molecular disk.  more » « less
Award ID(s):
1714688
PAR ID:
10480953
Author(s) / Creator(s):
Publisher / Repository:
Bulletin of the AAS
Date Published:
Journal Name:
Bulletin of the AAS
Edition / Version:
AAS242 Abstracts
Volume:
55
Issue:
6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Outer Scutum-Centaurus spiral arm (OSC) is the outermost molecular spiral arm in the Galaxy and contains the most distant known high-mass star formation regions in the Milky Way. HII regions are the archetypical tracers of high-mass star formation, and because of their high luminosities, they can be seen across the entire Galactic disk from mid-infrared to radio wavelengths. We have detected HII regions at nearly 20 locations in the OSC, as far as 23.5 kpc from the Sun and 15 kpc from the Galactic center on the far side of the Galactic center. The far outer Galaxy has lower metallicity than the more inner regions of the Milky Way, with 12 + log(O/H) = 8.29 at the OSC versus 8.9 and 8.54 at the Galactic Center and the Solar neighborhood, respectively. Coupled with lower gas densities, star formation in the OSC could be similar to that of a much younger Milky Way or galaxies like the Large Magellanic Cloud. We find large reservoirs of diffuse and dense molecular gas (13CO, HCO+, HCN) in the OSC with the Argus array on the Green Bank Telescope (up to 105 Solar masses). We are also able to estimate the central ionizing sources from Very Large Array continuum observations, showing central stellar types as early as O4. Combined, these observations allow us to study chemical abundances and star formation efficiencies on the outer edge of the Milky Way, putting constraints on star formation properties towards the edge of the Galaxy's molecular disk. 
    more » « less
  2. HII regions are the archetypical tracers of high-mass star formation. Because of their high luminosities, they can be seen across the entire Galactic disk from mid-infrared to radio wavelengths. A uniformly sensitive survey of Galactic HII regions across the disk would allow us to constrain the properties of Galactic structure and star formation. We have cataloged over 8000 HII regions and candidates in the WISE Catalog of Galactic HII Regions (astro.phys.wvu.edu/wise), but only 2000 of these are confirmed HII regions. The work is ongoing, but from our survey completeness limits and population synthesis modeling, we predict there are nearly 10,000 HII regions in the Milky Way created by a central star of type B2 or earlier. A population of especially interesting HII regions trace the Outer Scutum-Centaurus spiral arm (OSC), the most distant molecular spiral arm in the Milky Way. These regions represent star formation at low densities and low metallicities, similar to the conditions in galaxies like the Large Magellanic Cloud or a much younger Milky Way. To date, we have detected high-mass star formation at 17 locations in the OSC, with the most distant source at 23.5 kpc from the Sun and 17 kpc from the Galactic Center. They have molecular cloud masses up to 105 Msol and central stellar types as early as O4. By comparing molecular and stellar masses, we can begin to put constraints on the star formation efficiency of these distant outer Galaxy sources. We map the ionized gas using the Very Large Array at X-band in the D-configuration. We map the 13CO, HCN, and HCO+ molecular gas emission using the Argus array on the Green Bank Telescope, producing individual 5 arcmin maps with 8 arcsec resolution and 0.5 K sensitivity in 20 minutes. 
    more » « less
  3. There is relatively little known about Galactic star formation in the outer edges of the Milky Way, particularly in the Outer Scutum-Centaurus spiral arm (OSC). Lying about 15 kpc from the center of the Galaxy, the OSC was discovered in 2011 and is the most distant molecular spiral arm of the Milky Way. The OSC warps up to 4 degrees above the Galactic plane and as a result, has been excluded from the scope of many surveys of the Galactic plane, typically confined to a single degree above or below the plane. The goal of our study is to identify radio continuum from HII regions in the OSC in order to better understand the population of high-mass star formation regions in the outer Galaxy. We observed 12 HII Regions in the OSC using the Very Large Array at 10 GHz. Of our 12 targets, 7 are re-observations of undetected sources from Armentrout et al. (2017). The remaining 5 targets are sources without previously observed 10 GHz radio continuum data. We identify 10 GHz radio continuum associated with 7 of our OSC HII region targets for the first time. Assuming one dominant ionizing source per HII region, we assign spectral types from O9 to O5.5 for these sources, depending on their distance and continuum intensity. The remaining 5 nondetections represent lower-mass (B-type) star-forming regions below the sensitivity limit of our survey. These regions represent very high-mass star formation on the outer edge of the Galaxy, where densities and metallicities might be more similar to that of a much younger Milky Way or lower mass galaxies like the Magellanic Clouds. 
    more » « less
  4. Abstract We present Atacama Large Millimeter/submillimeter Array (ALMA) imaging of molecular gas across the full star-forming disk of the barred spiral galaxy M83 in CO( J = 1–0). We jointly deconvolve the data from ALMA’s 12 m, 7 m, and Total Power arrays using the MIRIAD package. The data have a mass sensitivity and resolution of 10 4 M ⊙ (3 σ ) and 40 pc—sufficient to detect and resolve a typical molecular cloud in the Milky Way with a mass and diameter of 4 × 10 5 M ⊙ and 40 pc, respectively. The full disk coverage shows that the characteristics of molecular gas change radially from the center to outer disk, with the locally measured brightness temperature, velocity dispersion, and integrated intensity (surface density) decreasing outward. The molecular gas distribution shows coherent large-scale structures in the inner part, including the central concentration, offset ridges along the bar, and prominent molecular spiral arms. However, while the arms are still present in the outer disk, they appear less spatially coherent, and even flocculent. Massive filamentary gas concentrations are abundant even in the interarm regions. Building up these structures in the interarm regions would require a very long time (≳100 Myr). Instead, they must have formed within stellar spiral arms and been released into the interarm regions. For such structures to survive through the dynamical processes, the lifetimes of these structures and their constituent molecules and molecular clouds must be long (≳100 Myr). These interarm structures host little or no star formation traced by H α . The new map also shows extended CO emission, which likely represents an ensemble of unresolved molecular clouds. 
    more » « less
  5. Despite decades of effort, the morphological structure of the Milky Way remains hidden behind dust extinction, small number statistics, and complicated datasets. HII regions, the volumes of ionized gas surrounding recently-formed massive stars, are a classic tracer of spiral arms in galaxies. Over the past decade, the HII Region Discovery Surveys have nearly tripled the number of known Galactic HII regions. With the new Galaxy-wide flux-limited sample of Milky Way HII regions, we are poised to revolutionize our understanding of spiral structure across the Galactic disk. Traditional methods of fitting Galactic structure models to the three-dimensional positions of these nebulae are impossible, however, since most Galactic HII regions lack accurate distance determinations. We are developing a novel machine learning approach that uses simulation based inference to fit complex models of Galactic structure to the complicated position-position-velocity HII region dataset, thereby removing the need for accurate distances. Using simulated observations, we demonstrate the efficacy of this new technique and its potential to reveal the structure of spiral arms across the Milky Way. 
    more » « less