skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Misleading Beyond Visual Tricks: How People Actually Lie with Charts
Data visualizations can empower an audience to make informed decisions. At the same time, deceptive representations of data can lead to inaccurate interpretations while still providing an illusion of data-driven insights. Existing research on misleading visualizations primarily focuses on examples of charts and techniques previously reported to be deceptive. These approaches do not necessarily describe how charts mislead the general population in practice. We instead present an analysis of data visualizations found in a real-world discourse of a significant global event---Twitter posts with visualizations related to the COVID-19 pandemic. Our work shows that, contrary to conventional wisdom, violations of visualization design guidelines are not the dominant way people mislead with charts. Specifically, they do not disproportionately lead to reasoning errors in posters' arguments. Through a series of examples, we present common reasoning errors and discuss how even faithfully plotted data visualizations can be used to support misinformation online.  more » « less
Award ID(s):
2041136
PAR ID:
10481331
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
Proceedings of the CHI Conference on Human Factors in Computing Systems
ISBN:
9781450394215
Page Range / eLocation ID:
1 to 21
Format(s):
Medium: X
Location:
Hamburg Germany
Sponsoring Org:
National Science Foundation
More Like this
  1. Deceptive design patterns (sometimes called “dark patterns”) are user interface design elements that may trick, deceive, or mislead users into behaviors that often benefit the party implementing the design over the end user. Prior work has taxonomized, investigated, and measured the prevalence of such patterns primarily in visual user interfaces (e.g., on websites). However, as the ubiquity of voice assistants and other voice-assisted technologies increases, we must anticipate how deceptive designs will be (and indeed, are already) deployed in voice interactions. This paper makes two contributions towards characterizing and surfacing deceptive design patterns in voice interfaces. First, we make a conceptual contribution, identifying key characteristics of voice interfaces that may enable deceptive design patterns, and surfacing existing and theoretical examples of such patterns. Second, we present the findings from a scenario-based user survey with 93 participants, in which we investigate participants’ perceptions of voice interfaces that we consider to be both deceptive and non-deceptive. 
    more » « less
  2. The visualization community has seen a rise in the adoption of user studies. Empirical user studies systematically test the assumptions that we make about how visualizations can help or hinder viewers’ performance of tasks. Although the increase in user studies is encouraging, it is vital that research on human reasoning with visualizations be grounded in an understanding of how the mind functions. Previously, there were no sufficient models that illustrate the process of decision-making with visualizations. However, Padilla et al. [41] recently proposed an integrative model for decision-making with visualizations, which expands on modern theories of visualization cognition and decision-making. In this paper, we provide insights into how cognitive models can accelerate innovation, improve validity, and facilitate replication efforts, which have yet to be thoroughly discussed in the visualization community. To do this, we offer a compact overview of the cognitive science of decision-making with visualizations for the visualization community, using the Padilla et al. [41] cognitive model as a guiding framework. By detailing examples of visualization research that illustrate each component of the model, this paper offers novel insights into how visualization researchers can utilize a cognitive framework to guide their user studies. We provide practical examples of each component of the model from empirical studies of visualizations, along with visualization implications of each cognitive process, which have not been directly addressed in prior work. Finally, this work offers a case study in utilizing an understanding of human cognition to generate a novel solution to a visualization reasoning bias in the context of hurricane forecast track visualizations. 
    more » « less
  3. Attempting to make sense of a phenomenon or crisis, social media users often share data visualizations and interpretations that can be erroneous or misleading. Prior work has studied how data visualizations can mislead, but do misleading visualizations reach a broad social media audience? And if so, do users amplify or challenge misleading interpretations? To answer these questions, we conducted a mixed-methods analysis of the public's engagement with data visualization posts about COVID-19 on Twitter. Compared to posts with accurate visual insights, our results show that posts with misleading visualizations garner more replies in which the audiences point out nuanced fallacies and caveats in data interpretations. Based on the results of our thematic analysis of engagement, we identify and discuss important opportunities and limitations to effectively leveraging crowdsourced assessments to address data-driven misinformation. 
    more » « less
  4. Data visualizations typically show a representation of a data set with little to no focus on the repeatability or generalizability of the displayed trends and patterns. However, insights gleaned from these visualizations are often used as the basis for decisions about future events. Visualizations of retrospective data therefore often serve as “visual predictive models.” However, this visual predictive model approach can lead to invalid inferences. In this article, we describe an approach to visual model validation called Inline Replication. Inline Replication is closely related to the statistical techniques of bootstrap sampling and cross-validation and, like those methods, provides a non-parametric and broadly applicable technique for assessing the variance of findings from visualizations. This article describes the overall Inline Replication process and outlines how it can be integrated into both traditional and emerging “big data” visualization pipelines. It also provides examples of how Inline Replication can be integrated into common visualization techniques such as bar charts and linear regression lines. Results from an empirical evaluation of the technique and two prototype Inline Replication–based visual analysis systems are also described. The empirical evaluation demonstrates the impact of Inline Replication under different conditions, showing that both (1) the level of partitioning and (2) the approach to aggregation have a major influence over its behavior. The results highlight the trade-offs in choosing Inline Replication parameters but suggest that using [Formula: see text] partitions is a reasonable default. 
    more » « less
  5. The growing popularity of interactive time series exploration platforms has made data visualization more accessible to the public. However, the ease of creating polished charts with preloaded data also enables selective information presentation, often resulting in biased or misleading visualizations. Research shows that these tools have been used to spread misinformation, particularly in areas such as public health and economic policies during the COVID-19 pandemic. Post hoc fact-checking may be ineffective because it typically addresses only a portion of misleading posts and comes too late to curb the spread. In this work, we explore using visualization design to counteract cherry-picking, a common tactic in deceptive visualizations. We propose a design space of guardrails—interventions to expose cherry-picking in time-series explorers. Through three crowd-sourced experiments, we demonstrate that guardrails, particularly those superimposing data, can encourage skepticism, though with some limitations. We provide recommendations for developing more effective visualization guardrails. 
    more » « less