skip to main content

Title: Mergers of black hole binaries driven by misaligned circumbinary discs

With hydrodynamical simulations we examine the evolution of a highly misaligned circumbinary disc around a black hole binary including the effects of general relativity. We show that a disc mass of just a few per cent of the binary mass can significantly increase the binary eccentricity through von-Zeipel–Kozai–Lidov (ZKL) like oscillations provided that the disc lifetime is longer than the ZKL oscillation time-scale. The disc begins as a relatively narrow ring of material far from the binary and spreads radially. When the binary becomes highly eccentric, disc breaking forms an inner disc ring that quickly aligns to polar. The polar ring drives fast retrograde apsidal precession of the binary that weakens the ZKL effect. This allows the binary eccentricity to remain at a high level and may significantly shorten the black hole merger time. The mechanism requires the initial disc inclination relative to the binary to be closer to retrograde than to prograde.

more » « less
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society: Letters
Medium: X Size: p. L161-L167
["p. L161-L167"]
Sponsoring Org:
National Science Foundation
More Like this

    Stars and stellar remnants orbiting a supermassive black hole (SMBH) can interact with an active galactic nucleus (AGN) disc. Over time, prograde orbiters (inclination i < 90°) decrease inclination, as well as semimajor axis (a) and eccentricity (e) until orbital alignment with the gas disc (‘disc capture’). Captured stellar-origin black holes (sBH) add to the embedded AGN population that drives sBH–sBH mergers detectable in gravitational waves using LIGO–Virgo–KAGRA or sBH–SMBH mergers detectable with Laser Interferometer Space Antenna. Captured stars can be tidally disrupted by sBH or the SMBH or rapidly grow into massive ‘immortal’ stars. Here, we investigate the behaviour of polar and retrograde orbiters (i ≥ 90°) interacting with the disc. We show that retrograde stars are captured faster than prograde stars, flip to prograde orientation (i < 90°) during capture, and decrease a dramatically towards the SMBH. For sBH, we find a critical angle iret ∼ 113°, below which retrograde sBH decay towards embedded prograde orbits (i → 0°), while for io > iret sBH decay towards embedded retrograde orbits (i → 180°). sBH near polar orbits (i ∼ 90°) and stars on nearly embedded retrograde orbits (i ∼ 180°) show the greatest decreases in a. Whether a star is captured by the disc within an AGN lifetime depends primarily on disc density, and secondarily on stellar type and initial a. For sBH, disc capture time is longest for polar orbits, low-mass sBH, and lower density discs. Larger mass sBH should typically spend more time in AGN discs, with implications for the spin distribution of embedded sBH.

    more » « less

    Stellar-mass binary black holes (BBHs) embedded in active galactic nucleus (AGN) discs are possible progenitors of black hole mergers detected in gravitational waves by LIGO/VIRGO. To better understand the hydrodynamical evolution of BBHs interacting with the disc gas, we perform a suite of high-resolution 2D simulations of binaries in local disc (shearing-box) models, considering various binary mass ratios, eccentricities and background disc properties. We use the γ-law equation of state and adopt a robust post-processing treatment to evaluate the mass accretion rate, torque and energy transfer rate on the binary to determine its long-term orbital evolution. We find that circular comparable-mass binaries contract, with an orbital decay rate of a few times the mass doubling rate. Eccentric binaries always experience eccentricity damping. Prograde binaries with higher eccentricities or smaller mass ratios generally have slower orbital decay rates, with some extreme cases exhibiting orbital expansion. The averaged binary mass accretion rate depends on the physical size of the accretor. The accretion flows are highly variable, and the dominant variability frequency is the apparent binary orbital frequency (in the rotating frame around the central massive BH) for circular binaries but gradually shifts to the radial epicyclic frequency as the binary eccentricity increases. Our findings demonstrate that the dynamics of BBHs embedded in AGN discs is quite different from that of isolated binaries in their own circumbinary discs. Furthermore, our results suggest that the hardening time-scales of the binaries are much shorter than their migration time-scales in the disc, for all reasonable binary and disc parameters.

    more » « less

    Stellar-mass binary black holes (BBHs) embedded in active galactic nucleus (AGN) discs offer a distinct dynamical channel to produce black hole mergers detected in gravitational waves by LIGO/Virgo. To understand their orbital evolution through interactions with the disc gas, we perform a suite of two-dimensional high-resolution, local shearing box, viscous hydrodynamical simulations of equal-mass binaries. We find that viscosity not only smooths the flow structure around prograde circular binaries,but also greatly raises their accretion rates. The torque associated with accretion may be overwhelmingly positive and dominate over the gravitational torque at a high accretion rate. However, the accreted angular momentum per unit mass decreases with increasing viscosity, making it easier to shrink the binary orbit. In addition, retrograde binaries still experience rapid orbital decay, and prograde eccentric binaries still experience eccentricity damping. Our numerical experiments further show that prograde binaries are more likely to be hardened if the physical sizes of the accretors are sufficiently small such that the accretion rate is reduced. The dependence of the binary accretion rate on the accretor size can be weaken through boosted accretion either due to a high viscosity or a more isothermal-like equation of state. Our results widen the explored parameter space for the hydrodynamics of embedded BBHs and demonstrate that their orbital evolution in AGN discs is a complex, multifaceted problem.

    more » « less

    We report discovery of a bright, nearby ($G = 13.8;\, \, d = 480\, \rm pc$) Sun-like star orbiting a dark object. We identified the system as a black hole candidate via its astrometric orbital solution from the Gaia mission. Radial velocities validated and refined the Gaia solution, and spectroscopy ruled out significant light contributions from another star. Joint modelling of radial velocities and astrometry constrains the companion mass of $M_2 = 9.62\pm 0.18\, \mathrm{M}_{\odot }$. The spectroscopic orbit alone sets a minimum companion mass of $M_2\gt 5\, \mathrm{M}_{\odot }$; if the companion were a $5\, \mathrm{M}_{\odot }$ star, it would be 500 times more luminous than the entire system. These constraints are insensitive to the mass of the luminous star, which appears as a slowly rotating G dwarf ($T_{\rm eff}=5850\, \rm K$, log g = 4.5, $M=0.93\, \mathrm{M}_{\odot }$), with near-solar metallicity ($\rm [Fe/H] = -0.2$) and an unremarkable abundance pattern. We find no plausible astrophysical scenario that can explain the orbit and does not involve a black hole. The orbital period, Porb = 185.6 d, is longer than that of any known stellar-mass black hole binary. The system’s modest eccentricity (e = 0.45), high metallicity, and thin-disc Galactic orbit suggest that it was born in the Milky Way disc with at most a weak natal kick. How the system formed is uncertain. Common envelope evolution can only produce the system’s wide orbit under extreme and likely unphysical assumptions. Formation models involving triples or dynamical assembly in an open cluster may be more promising. This is the nearest known black hole by a factor of 3, and its discovery suggests the existence of a sizable population of dormant black holes in binaries. Future Gaia releases will likely facilitate the discovery of dozens more.

    more » « less

    We present hydrodynamical simulations to model the accretion flow from a polar circumbinary disc on to a high eccentricity (e = 0.78) binary star system with near unity mass ratio (q = 0.83), as a model for binary HD 98800 BaBb. We compare the polar circumbinary disc accretion flow with the previously studied coplanar case. In the coplanar case, the circumbinary disc becomes eccentric and the accretion alternates from being dominant on to one binary member to the other. For the polar disc case involving a highly eccentric binary, we find that the circumbinary disc retains its initially low eccentricity and that the primary star accretion rate is always about the same as the secondary star accretion rate. Recent observations of the binary HD 98800 BaBb, which has a polar circumbinary disc, have been used to determine the value of the $\rm H\,\alpha$ flux from the brighter component. From this value, we infer that the accretion rate is much lower than for typical T Tauri stars. The eccentric orbit of the outer companion HD 98800 A increases the accretion rate on to HD 98800 B by ∼20 per cent after each periastron passage. Our hydrodynamical simulations are unable to explain such a low accretion rate unless the disc viscosity parameter is very small, α < 10−5. Additional observations of this system would be useful to check on this low accretion rate.

    more » « less