Abstract Fire activity is changing dramatically across the globe, with uncertain effects on ecosystem processes, especially below‐ground. Fire‐driven losses of soil carbon (C) are often assumed to occur primarily in the upper soil layers because the repeated combustion of above‐ground biomass limits organic matter inputs into surface soil. However, C losses from deeper soil may occur if frequent burning reduces root biomass inputs of C into deep soil layers or stimulates losses of C via leaching and priming.To assess the effects of fire on soil C, we sampled 12 plots in a 51‐year‐long fire frequency manipulation experiment in a temperate oak savanna, where variation in prescribed burning frequency has created a gradient in vegetation structure from closed‐canopy forest in unburned plots to open‐canopy savanna in frequently burned plots.Soil C stocks were nonlinearly related to fire frequency, with soil C peaking in savanna plots burned at an intermediate fire frequency and declining in the most frequently burned plots. Losses from deep soil pools were significant, with the absolute difference between intermediately burned plots versus most frequently burned plots more than doubling when the full 1 m sample was considered rather than the top 0–20 cm alone (losses of 98.5 Mg C/ha [−76%] and 42.3 Mg C/ha [−68%] in the full 1 m and 0–20 cm layers respectively). Compared to unburned forested plots, the most frequently burned plots had 65.8 Mg C/ha (−58%) less C in the full 1 m sample. Root biomass below the top 20 cm also declined by 39% with more frequent burning. Concurrent fire‐driven losses of nitrogen and gains in calcium and phosphorus suggest that burning may increase nitrogen limitation and play a key role in the calcium and phosphorus cycles in temperate savannas.Synthesis. Our results illustrate that fire‐driven losses in soil C and root biomass in deep soil layers may be critical factors regulating the net effect of shifting fire regimes on ecosystem C in forest‐savanna transitions. Projected changes in soil C with shifting fire frequencies in savannas may be 50% too low if they only consider changes in the topsoil.
more »
« less
Evaluating plant lineage losses and gains in temperate forest understories: a phylogenetic perspective on climate change and nitrogen deposition
Summary Global change has accelerated local species extinctions and colonizations, often resulting in losses and gains of evolutionary lineages with unique features. Do these losses and gains occur randomly across the phylogeny?We quantified: temporal changes in plant phylogenetic diversity (PD); and the phylogenetic relatedness (PR) of lost and gained species in 2672 semi‐permanent vegetation plots in European temperate forest understories resurveyed over an average period of 40 yr.Controlling for differences in species richness, PD increased slightly over time and across plots. Moreover, lost species within plots exhibited a higher degree of PR than gained species. This implies that gained species originated from a more diverse set of evolutionary lineages than lost species. Certain lineages also lost and gained more species than expected by chance, with Ericaceae, Fabaceae, and Orchidaceae experiencing losses and Amaranthaceae, Cyperaceae, and Rosaceae showing gains. Species losses and gains displayed no significant phylogenetic signal in response to changes in macroclimatic conditions and nitrogen deposition.As anthropogenic global change intensifies, temperate forest understories experience losses and gains in specific phylogenetic branches and ecological strategies, while the overall mean PD remains relatively stable.
more »
« less
- Award ID(s):
- 2213567
- PAR ID:
- 10481423
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- New Phytologist
- Volume:
- 241
- Issue:
- 5
- ISSN:
- 0028-646X
- Format(s):
- Medium: X Size: p. 2287-2299
- Size(s):
- p. 2287-2299
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Summary Regions harbouring high unique phylogenetic diversity (PD) are priority targets for conservation. Here, we analyse the global distribution of plant PD, which remains poorly understood despite plants being the foundation of most terrestrial habitats and key to human livelihoods.Capitalising on a recently completed, comprehensive global checklist of vascular plants, we identify hotspots of unique plant PD and test three hypotheses: (1) PD is more evenly distributed than species diversity; (2) areas of highest PD (often called ‘hotspots’) do not maximise cumulative PD; and (3) many biomes are needed to maximise cumulative PD.Our results support all three hypotheses: more than twice as many regions are required to cover 50% of global plant PD compared to 50% of species; regions that maximise cumulative PD substantially differ from the regions with outstanding individual PD; and while (sub‐)tropical moist forest regions dominate across PD hotspots, other forest types and open biomes are also essential.Safeguarding PD in the Anthropocene (including the protection of some comparatively species‐poor areas) is a global, increasingly recognised responsibility. Having highlighted countries with outstanding unique plant PD, further analyses are now required to fully understand the global distribution of plant PD and associated conservation imperatives across spatial scales.more » « less
-
Abstract Declines in grassland diversity in response to nutrient addition are a general consequence of global change. This decline in species richness may be driven by multiple underlying processes operating at different time‐scales. Nutrient addition can reduce diversity by enhancing the rate of local extinction via competitive exclusion, or by reducing the rate of colonization by constraining the pool of species able to colonize under new conditions. Partitioning net change into extinction and colonization rates will better delineate the long‐term effect of global change in grasslands.We synthesized changes in richness in response to experimental fertilization with nitrogen, phosphorus and potassium with micronutrients across 30 grasslands. We quantified changes in local richness, colonization, and extinction over 8–10 years of nutrient addition, and compared these rates against control conditions to isolate the effect of nutrient addition from background dynamics.Total richness at steady state in the control plots was the sum of equal, relatively high rates of local colonization and extinction. On aggregate, 30%–35% of initial species were lost and the same proportion of new species were gained at least once over a decade. Absolute turnover increased with site‐level richness but was proportionately greater at lower‐richness sites relative to starting richness. Loss of total richness with nutrient addition, especially N in combination with P or K, was driven by enhanced rates of extinction with a smaller contribution from reduced colonization. Enhanced extinction and reduced colonization were disproportionately among native species, perennials, and forbs. Reduced colonization plateaued after the first few (<5) years after nutrient addition, while enhanced extinction continued throughout the first decade.Synthesis. Our results indicate a high rate of colonizations and extinctions underlying the richness of ambient communities and that nutrient enhancement drives overall declines in diversity primarily by exclusion of previously established species. Moreover, enhanced extinction continues over long time‐scales, suggesting continuous, long‐term community responses and a need for long‐term study to fully realize the extinction impact of increased nutrients on grassland composition.more » « less
-
Abstract Theory predicts that trophic specialization (i.e. low dietary diversity) should make consumer populations sensitive to environmental disturbances. Yet diagnosing specialization is complicated both by the difficulty of precisely quantifying diet composition and by definitional ambiguity: what makes a diet ‘diverse’?We sought to characterize the relationship between taxonomic dietary diversity (TDD) and phylogenetic dietary diversity (PDD) in a species‐rich community of large mammalian herbivores in a semi‐arid East African savanna. We hypothesized that TDD and PDD would be positively correlated within and among species, because taxonomically diverse diets are likely to include plants from many lineages.By using DNA metabarcoding to analyse 1,281 faecal samples collected across multiple seasons, we compiled high‐resolution diet profiles for 25 sympatric large‐herbivore species. For each of these populations, we calculated TDD and PDD with reference to a DNA reference library for local plants.Contrary to our hypothesis, measures of TDD and PDD were either uncorrelated or negatively correlated with each other. Thus, these metrics reflect distinct dimensions of dietary specialization both within and among species. In general, grazers and ruminants exhibited greater TDD, but lower PDD, than did browsers and non‐ruminants. We found significant seasonal variation in TDD and/or PDD for all but four species (Grevy's zebra, buffalo, elephant, Grant's gazelle); however, the relationship between TDD and PDD was consistent across seasons for all but one of the 12 best‐sampled species (plains zebra).Our results show that taxonomic generalists can be phylogenetic specialists, and vice versa. These two dimensions of dietary diversity suggest contrasting implications for efforts to predict how consumers will respond to climate change and other environmental perturbations. For example, populations with low TDD may be sensitive to phylogenetically ‘random’ losses of food species, whereas populations with low PDD may be comparatively more sensitive to environmental changes that disadvantage entire plant lineages—and populations with low dietary diversity in both taxonomic and phylogenetic dimensions may be most vulnerable of all.more » « less
-
Patterns of species diversity have been associated with changes in climate across latitude and elevation. However, the ecological and evolutionary mechanisms underlying these relationships are still actively debated. Here, we present a complementary view of the well-known tropical niche conservatism (TNC) hypothesis, termed the multiple zones of origin (MZO) hypothesis, to explore mechanisms underlying latitudinal and elevational gradients of phylogenetic diversity in tree communities. The TNC hypothesis posits that most lineages originate in warmer, wetter, and less seasonal environments in the tropics and rarely colonize colder, drier, and more seasonal environments outside of the tropical lowlands, leading to higher phylogenetic diversity at lower latitudes and elevations. In contrast, the MZO hypothesis posits that lineages also originate in temperate environments and readily colonize similar environments in the tropical highlands, leading to lower phylogenetic diversity at lower latitudes and elevations. We tested these phylogenetic predictions using a combination of computer simulations and empirical analyses of tree communities in 245 forest plots located in six countries across the tropical and subtropical Andes. We estimated the phylogenetic diversity for each plot and regressed it against elevation and latitude. Our simulated and empirical results provide strong support for the MZO hypothesis. Phylogenetic diversity among co-occurring tree species increased with both latitude and elevation, suggesting an important influence on the historical dispersal of lineages with temperate origins into the tropical highlands. The mixing of different floras was likely favored by the formation of climatically suitable corridors for plant migration due to the Andean uplift. Accounting for the evolutionary history of plant communities helps to advance our knowledge of the drivers of tree community assembly along complex climatic gradients, and thus their likely responses to modern anthropogenic climate change.more » « less
An official website of the United States government
