skip to main content


Title: Physics-aware differentiable design of magnetically actuated kirigami for shape morphing
Abstract

Shape morphing that transforms morphologies in response to stimuli is crucial for future multifunctional systems. While kirigami holds great promise in enhancing shape-morphing, existing designs primarily focus on kinematics and overlook the underlying physics. This study introduces a differentiable inverse design framework that considers the physical interplay between geometry, materials, and stimuli of active kirigami, made by soft material embedded with magnetic particles, to realize target shape-morphing upon magnetic excitation. We achieve this by combining differentiable kinematics and energy models into a constrained optimization, simultaneously designing the cuts and magnetization orientations to ensure kinematic and physical feasibility. Complex kirigami designs are obtained automatically with unparalleled efficiency, which can be remotely controlled to morph into intricate target shapes and even multiple states. The proposed framework can be extended to accommodate various active systems, bridging geometry and physics to push the frontiers in shape-morphing applications, like flexible electronics and minimally invasive surgery.

 
more » « less
Award ID(s):
2227641 2145601 2300157 2142789
NSF-PAR ID:
10481474
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
14
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Shape‐morphing magnetic soft materials, composed of magnetic particles in a soft polymer matrix, can transform shape reversibly, remotely, and rapidly, finding diverse applications in actuators, soft robotics, and biomedical devices. To achieve on‐demand and sophisticated shape morphing, the manufacture of structures with complex geometry and magnetization distribution is highly desired. Here, a magnetic dynamic polymer (MDP) composite composed of hard‐magnetic microparticles in a dynamic polymer network with thermally responsive reversible linkages, which permits functionalities including targeted welding for magnetic‐assisted assembly, magnetization reprogramming, and permanent structural reconfiguration, is reported. These functions not only provide highly desirable structural and material programmability and reprogrammability but also enable the manufacturing of functional soft architected materials such as 3D kirigami with complex magnetization distribution. The welding of magnetic‐assisted modular assembly can be further combined with magnetization reprogramming and permanent reshaping capabilities for programmable and reconfigurable architectures and morphing structures. The reported MDP are anticipated to provide a new paradigm for the design and manufacture of future multifunctional assemblies and reconfigurable morphing architectures and devices.

     
    more » « less
  2. Abstract

    Kirigami, a traditional paper cutting art, offers a promising strategy for 2D-to-3D shape morphing through cut-guided deformation. Existing kirigami designs for target 3D curved shapes rely on intricate cut patterns in thin sheets, making the inverse design challenging. Motivated by the Gauss-Bonnet theorem that correlates the geodesic curvature along the boundary with the Gaussian curvature, here, we exploit programming the curvature of cut boundaries rather than the complex cut patterns in kirigami sheets for target 3D curved morphologies through both forward and inverse designs. The strategy largely simplifies the inverse design. Leveraging this strategy, we demonstrate its potential applications as a universal and nondestructive gripper for delicate objects, including live fish, raw egg yolk, and a human hair, as well as dynamically conformable heaters for human knees. This study opens a new avenue to encode boundary curvatures for shape-programing materials with potential applications in soft robotics and wearable devices.

     
    more » « less
  3. Abstract

    Soft deployable structures – unlike conventional piecewise rigid deployables based on hinges and springs – can assume intricate 3‐D shapes, thereby enabling transformative soft robotic and manufacturing technologies. Their virtually infinite degrees of freedom allow precise control over the final shape. The same enabling high dimensionality, however, poses a challenge for solving the inverse problem: fabrication of desired 3D structures requires manufacturing technologies with extensive local actuation and control, and a trial‐and‐error search over a large design space. Both of these shortcomings are addressed by first developing a simplified planar fabrication approach that combines two ingredients: strain mismatch between two layers of a composite shell and kirigami cuts that relieves localized stress. In principle, it is possible to generate targeted 3‐D shapes by designing the appropriate kirigami cuts and the amount of prestretch (without any local control). Second, a data‐driven physics‐guided framework is formulated that reduces the dimensionality of the inverse design problem using autoencoders and efficiently searches through the “latent” parameter space in an active learning approach. The rapid design procedure is demonstrated via a range of target shapes, such as peanuts, pringles, flowers, and pyramids. Experiments and our numerical predictions are found to be in good agreement.

     
    more » « less
  4. Abstract

    A new class of thin flexible structures is introduced that morph from flat into prescribed 3D shapes through strain mismatch between layers of a composite plate. To achieve control over the target shape, two different concepts are coupled. First, motivated by biological growth, strain mismatch is applied between the flat composite layers to transform it into a 3D shape. Depending on the amount of the applied strain mismatch, the transformation involves buckling into one of the available finite number of deformation modes. Second, inspired by kirigami, portions of the material are removed from one of the layers according to a specific pattern. This dramatically increases the number of possible 3D shapes and allows us to attain specific topologies. An experimental apparatus that allows precise control of the strain mismatch is devised. An inverse problem is posed, where starting from a given target shape, the physical parameters that make these shapes possible are determined. To show how the concept works, it focuses on circular composite plates and designs a kirigami pattern that yields a hemispherical structure. The analysis combines a theoretical approach with numerical simulations and physical experiments to understand and predict the shape transition from 2D to 3D. The tools developed here can be extended to attain arbitrary 3D shapes. The initially flat shape suggests that conventional additive manufacturing techniques can be used to functionalize the soft kirigami composite to fabricate, for example, deployable 3D structures, smart skins, and soft electromagnetic metasurfaces.

     
    more » « less
  5. Deployability, multifunctionality, and tunability are features that can be explored in the design space of origami engineering solutions. These features arise from the shape-changing capabilities of origami assemblies, which require effective actuation for full functionality. Current actuation strategies rely on either slow or tethered or bulky actuators (or a combination). To broaden applications of origami designs, we introduce an origami system with magnetic control. We couple the geometrical and mechanical properties of the bistable Kresling pattern with a magnetically responsive material to achieve untethered and local/distributed actuation with controllable speed, which can be as fast as a tenth of a second with instantaneous shape locking. We show how this strategy facilitates multimodal actuation of the multicell assemblies, in which any unit cell can be independently folded and deployed, allowing for on-the-fly programmability. In addition, we demonstrate how the Kresling assembly can serve as a basis for tunable physical properties and for digital computing. The magnetic origami systems are applicable to origami-inspired robots, morphing structures and devices, metamaterials, and multifunctional devices with multiphysics responses.

     
    more » « less