skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Asymmetric coding of reward prediction errors in human insula and dorsomedial prefrontal cortex
Abstract

The signed value and unsigned salience of reward prediction errors (RPEs) are critical to understanding reinforcement learning (RL) and cognitive control. Dorsomedial prefrontal cortex (dMPFC) and insula (INS) are key regions for integrating reward and surprise information, but conflicting evidence for both signed and unsigned activity has led to multiple proposals for the nature of RPE representations in these brain areas. Recently developed RL models allow neurons to respond differently to positive and negative RPEs. Here, we use intracranially recorded high frequency activity (HFA) to test whether this flexible asymmetric coding strategy captures RPE coding diversity in human INS and dMPFC. At the region level, we found a bias towards positive RPEs in both areas which paralleled behavioral adaptation. At the local level, we found spatially interleaved neural populations responding to unsigned RPE salience and valence-specific positive and negative RPEs. Furthermore, directional connectivity estimates revealed a leading role of INS in communicating positive and unsigned RPEs to dMPFC. These findings support asymmetric coding across distinct but intermingled neural populations as a core principle of RPE processing and inform theories of the role of dMPFC and INS in RL and cognitive control.

 
more » « less
NSF-PAR ID:
10481484
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
14
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Learning signals during reinforcement learning and cognitive control rely on valenced reward prediction errors (RPEs) and non-valenced salience prediction errors (PEs) driven by surprise magnitude. A core debate in reward learning focuses on whether valenced and non-valenced PEs can be isolated in the human electroencephalogram (EEG). We combine behavioral modeling and single-trial EEG regression to disentangle sequential PEs in an interval timing task dissociating outcome valence, magnitude, and probability. Multiple regression across temporal, spatial, and frequency dimensions characterized a spatio-tempo-spectral cascade from early valenced RPE value to non-valenced RPE magnitude, followed by outcome probability indexed by a late frontal positivity. Separating negative and positive outcomes revealed the valenced RPE value effect is an artifact of overlap between two non-valenced RPE magnitude responses: frontal theta feedback-related negativity on losses and posterior delta reward positivity on wins. These results reconcile longstanding debates on the sequence of components representing reward and salience PEs in the human EEG.

     
    more » « less
  2. Abstract

    Goal-directed behavior is dependent on neuronal activity in the prefrontal cortex (PFC) and extended frontostriatal circuitry. Stress and stress-related disorders are associated with impaired frontostriatal-dependent cognition. Our understanding of the neural mechanisms that underlie stress-related cognitive impairment is limited, with the majority of prior research focused on the PFC. To date, the actions of stress across cognition-related frontostriatal circuitry are unknown. To address this gap, the current studies examined the effects of acute noise-stress on the spiking activity of neurons and local field potential oscillatory activity within the dorsomedial PFC (dmPFC) and dorsomedial striatum (dmSTR) in rats engaged in a test of spatial working memory. Stress robustly suppressed responses of both dmPFC and dmSTR neurons strongly tuned to key task events (delay, reward). Additionally, stress strongly suppressed delay-related, but not reward-related, theta and alpha spectral power within, and synchrony between, the dmPFC and dmSTR. These observations provide the first demonstration that stress disrupts the neural coding and functional connectivity of key task events, particularly delay, within cognition-supporting dorsomedial frontostriatal circuitry. These results suggest that stress-related degradation of neural coding within both the PFC and striatum likely contributes to the cognition-impairing effects of stress.

     
    more » « less
  3. Abstract

    Deliberation is thought to involve the internal simulation of the outcomes of candidate actions, the valuation of those outcomes, and the selection of the actions with the highest expected value. While it is known that deliberation involves prefrontal cortical areas, specifically the dorsomedial prefrontal cortex (dmPFC), as well as the hippocampus (HPC) and other brain regions, how these areas process prospective information and select actions is not well understood. We recorded simultaneously from ensembles in dmPFC and CA1 of dorsal HPC in rats during performance of a spatial contingency switching task, and examined the relationships between spatial and reward encoding in these two areas during deliberation at the choice point. We found that CA1 and dmPFC represented either goal locations or the current position simultaneously, but that when goal locations were encoded, HPC and dmPFC did not always represent the same goal location. Ensemble activity in dmPFC predicted when HPC would represent goal locations, but on a broad timescale on the order of seconds. Also, reward encoding in dmPFC increased during hippocampal theta cycles where CA1 ensembles represented the goal location. These results suggest that dmPFC and HPC share prospective information during deliberation, that dmPFC may influence whether HPC represents prospective information, and that information recalled about goal locations by HPC may be integrated into dmPFC reward representations on fast timescales.

     
    more » « less
  4. Abstract

    Processing facial expressions of emotion draws on a distributed brain network. In particular, judging ambiguous facial emotions involves coordination between multiple brain areas. Here, we applied multimodal functional connectivity analysis to achieve network-level understanding of the neural mechanisms underlying perceptual ambiguity in facial expressions. We found directional effective connectivity between the amygdala, dorsomedial prefrontal cortex (dmPFC), and ventromedial PFC, supporting both bottom-up affective processes for ambiguity representation/perception and top-down cognitive processes for ambiguity resolution/decision. Direct recordings from the human neurosurgical patients showed that the responses of amygdala and dmPFC neurons were modulated by the level of emotion ambiguity, and amygdala neurons responded earlier than dmPFC neurons, reflecting the bottom-up process for ambiguity processing. We further found parietal-frontal coherence and delta-alpha cross-frequency coupling involved in encoding emotion ambiguity. We replicated the EEG coherence result using independent experiments and further showed modulation of the coherence. EEG source connectivity revealed that the dmPFC top-down regulated the activities in other brain regions. Lastly, we showed altered behavioral responses in neuropsychiatric patients who may have dysfunctions in amygdala-PFC functional connectivity. Together, using multimodal experimental and analytical approaches, we have delineated a neural network that underlies processing of emotion ambiguity.

     
    more » « less
  5. null (Ed.)
    Learning the low-dimensional representations of graphs (i.e., network embedding) plays a critical role in network analysis and facilitates many downstream tasks. Recently graph convolutional networks (GCNs) have revolutionized the field of network embedding, and led to state-of-the-art performance in network analysis tasks such as link prediction and node classification. Nevertheless, most of the existing GCN-based network embedding methods are proposed for unsigned networks. However, in the real world, some of the networks are signed, where the links are annotated with different polarities, e.g., positive vs. negative. Since negative links may have different properties from the positive ones and can also significantly affect the quality of network embedding. Thus in this paper, we propose a novel network embedding framework SNEA to learn Signed Network Embedding via graph Attention. In particular, we propose a masked self-attentional layer, which leverages self-attention mechanism to estimate the importance coefficient for pair of nodes connected by different type of links during the embedding aggregation process. Then SNEA utilizes the masked self-attentional layers to aggregate more important information from neighboring nodes to generate the node embeddings based on balance theory. Experimental results demonstrate the effectiveness of the proposed framework through signed link prediction task on several real-world signed network datasets. 
    more » « less