skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Polymorphic display and texture integrated systems controlled by capillarity
Soft robotics offer unusual bioinspired solutions to challenging engineering problems. Colorful display and morphing appendages are vital signaling modalities used by natural creatures to camouflage, attract mates, or deter predators. Engineering these display capabilities using traditional light emitting devices is energy expensive and bulky and requires rigid substrates. Here, we use capillary-controlled robotic flapping fins to create switchable visual contrast and produce state-persistent, multipixel displays that are 1000- and 10-fold more energy efficient than light emitting devices and electronic paper, respectively. We reveal the bimorphic ability of these fins, whereby they switch between straight or bent stable equilibria. By controlling the droplets temperature across the fins, the multifunctional cells simultaneously exhibit infrared signals decoupled from the optical signals for multispectral display. The ultralow power, scalability, and mechanical compliance make them suitable for curvilinear and soft machines.  more » « less
Award ID(s):
1825758
PAR ID:
10481668
Author(s) / Creator(s):
Publisher / Repository:
AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE
Date Published:
Journal Name:
Science advances
ISSN:
2375-2548
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Stretchable and free‐form displays receive significant attention as they hold immense potential for revolutionizing future display technologies. These displays are designed to conform to irregular surfaces and endure mechanical strains, making them well suited for applications in wearable electronics, biomedical devices, and interactive displays. Traditional light‐emitting devices typically employ brittle inorganic and metallic materials, which are not conducive to stretchability. However, replacing these nonflexible components with flexible/stretchable nanomaterials, soft organic materials, or their composites improves the overall flexibility and stretchability of devices. In this review, the roles and opportunities of nanomaterials, such as thin films, 1D nanofibrous materials, and micro/nanoparticles, are highlighted for enhancing the stretchability and overall performance of various types of light‐emitting devices. By leveraging the unique mechanical and electrical properties of nanomaterials, various efforts emerge to push the boundaries of stretchable display technologies and further realize their full potential for diverse applications. 
    more » « less
  2. The piezo-phototronic effect (a coupling effect of piezoelectric, photoexcitation and semiconducting properties, coined in 2010) has been demonstrated to be an ingenious and robust strategy to manipulate optoelectronic processes by tuning the energy band structure and photoinduced carrier behavior. The piezo-phototronic effect exhibits great potential in improving the quantum yield efficiencies of optoelectronic materials and devices and thus could help increase the energy conversion efficiency, thus alleviating the energy shortage crisis. In this review, the fundamental principles and challenges of representative optoelectronic materials and devices are presented, including photocatalysts (converting solar energy into chemical energy), solar cells (generating electricity directly under light illumination), photodetectors (converting light into electrical signals) and light-emitting diodes (LEDs, converting electric current into emitted light signals). Importantly, the mechanisms of how the piezo-phototronic effect controls the optoelectronic processes and the recent progress and applications in the above-mentioned materials and devices are highlighted and summarized. Only photocatalysts, solar cells, photodetectors, and LEDs that display piezo-phototronic behavior are reviewed. Material and structural design, property characterization, theoretical simulation calculations, and mechanism analysis are then examined as strategies to further enhance the quantum yield efficiency of optoelectronic devices via the piezo-phototronic effect. This comprehensive overview will guide future fundamental and applied studies that capitalize on the piezo-phototronic effect for energy conversion and storage. 
    more » « less
  3. null (Ed.)
    Abstract Organic light-emitting diode (OLED) displays are now poised to be the dominant mobile display technology and are at the heart of the most attractive televisions and electronic tablets on the market today. But this begs the question: what is the next big opportunity that will be addressed by organic electronics? We attempt to answer this question based on the unique attributes of organic electronic devices: their efficient optical absorption and emission properties, their ability to be deposited on ultrathin foldable, moldable and bendable substrates, the diversity of function due to the limitless palette of organic materials and the low environmental impact of the materials and their means of fabrication. With these unique qualities, organic electronics presents opportunities that range from lighting to solar cells to medical sensing. In this paper, we consider the transformative changes to electronic and photonic technologies that might yet be realized using these unconventional, soft semiconductor thin films. 
    more » « less
  4. The integration of synthetic biology and soft robotics can fundamentally advance sensory, diagnostic, and therapeutic functionality of bioinspired machines. However, such integration is currently impeded by the lack of soft-matter architectures that interface synthetic cells with electronics and actuators for controlled stimulation and response during robotic operation. Here, we synthesized a soft gripper that uses engineered bacteria for detecting chemicals in the environment, a flexible light-emitting diode (LED) circuit for converting biological to electronic signals, and soft pneu-net actuators for converting the electronic signals to movement of the gripper. We show that the hybrid bio-LED-actuator module enabled the gripper to detect chemical signals by applying pressure and releasing the contents of a chemical-infused hydrogel. The biohybrid gripper used chemical sensing and feedback to make actionable decisions during a pick-and-place operation. This work opens previously unidentified avenues in soft materials, synthetic biology, and integrated interfacial robotic systems. 
    more » « less
  5. Abstract Quasi‐2D Ruddlesden–Popper halide perovskites with a large exciton binding energy, self‐assembled quantum wells, and high quantum yield draw attention for optoelectronic device applications. Thin films of these quasi‐2D perovskites consist of a mixture of domains having different dimensionality, allowing energy funneling from lower‐dimensional nanosheets (high‐bandgap domains) to 3D nanocrystals (low‐bandgap domains). High‐quality quasi‐2D perovskite (PEA)2(FA)3Pb4Br13films are fabricated by solution engineering. Grazing‐incidence wide‐angle X‐ray scattering measurements are conducted to study the crystal orientation, and transient absorption spectroscopy measurements are conducted to study the charge‐carrier dynamics. These data show that highly oriented 2D crystal films have a faster energy transfer from the high‐bandgap domains to the low‐bandgap domains (<0.5 ps) compared to the randomly oriented films. High‐performance light‐emitting diodes can be realized with these highly oriented 2D films. Finally, amplified spontaneous emission with a low threshold 4.16 µJ cm−2is achieved and distributed feedback lasers are also demonstrated. These results show that it is important to control the morphology of the quasi‐2D films to achieve efficient energy transfer, which is a critical requirement for light‐emitting devices. 
    more » « less