A bstract We propose a new interacting dark sector model, Stepped Partially Acoustic Dark Matter (SPartAcous), that can simultaneously address the two most important tensions in current cosmological data, the H 0 and S 8 problems. As in the Partially Acoustic Dark Matter (PAcDM) scenario, this model features a subcomponent of dark matter that interacts with dark radiation at high temperatures, suppressing the growth of structure at small scales and thereby addressing the S 8 problem. However, in the SPartAcous model, the dark radiation includes a component with a light mass that becomes non-relativistic close to the time of matter-radiation equality. As this light component annihilates away, the remaining dark radiation heats up and its interactions with dark matter decouple. The heating up of the dark sector results in a step-like increase in the relative energy density in dark radiation, significantly reducing the H 0 tension, while the decoupling of dark matter and dark radiation ensures that the power spectrum at larger scales is identical to ΛCDM. 
                        more » 
                        « less   
                    
                            
                            Stepped Partially Acoustic Dark Matter, Large Scale Structure, and the Hubble Tension
                        
                    
    
            We propose a new interacting dark sector model, Stepped Partially Acoustic Dark Matter (SPartAcous), that can simultaneously address the two most important tensions in current cosmological data, the H0 and S8 problems. As in the Partially Acoustic Dark Matter (PAcDM) scenario, this model features a subcomponent of dark matter that interacts with dark radiation at high temperatures, suppressing the growth of structure at small scales and thereby addressing the S8 problem. However, in the SPartAcous model, the dark radiation includes a component with a light mass that becomes non-relativistic close to the time of matter-radiation equality. As this light component annihilates away, the remaining dark radiation heats up and its interactions with dark matter decouple. The heating up of the dark sector results in a step-like increase in the relative energy density in dark radiation, significantly reducing the H0 tension, while the decoupling of dark matter and dark radiation ensures that the power spectrum at larger scales is identical to ΛCDM. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1914679
- PAR ID:
- 10481675
- Publisher / Repository:
- Journal of High Energy Physics
- Date Published:
- Journal Name:
- The journal of high energy physics
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            We generalize the recently proposed Stepped Partially Acoustic Dark Matter (SPartAcous) model by including additional massless degrees of freedom in the dark radiation sector. We fit SPartAcous and its generalization against cosmological precision data from the cosmic microwave background, baryon acoustic oscillations, large-scale structure, supernovae type Ia, and Cepheid variables. We find that SPartAcous significantly reduces the H0 tension but does not provide any meaningful improvement of the S8 tension, while the generalized model succeeds in addressing both tensions, and provides a better fit than ΛCDM and other dark sector models proposed to address the same tensions. In the generalized model, H0 can be raised to 71.4 km/s/Mpc (the 95% upper limit), reducing the tension, if the fitted data does not include the direct measurement from the SH0ES collaboration, and to 73.7 km/s/Mpc (95% upper limit) if it does. A version of CLASS that has been modified to analyze this model is publicly available at https://github.com/ManuelBuenAbad/class_spartacous.more » « less
- 
            Light dark fermions can mass mix with the standard model (SM) neutrinos. As a result, through oscillations and scattering, they can equilibrate in the early universe. Interactions of the dark fermion generically suppress such production at high temperatures but enhance it at later times. We find that for a wide range of mixing angles and interaction strengths equilibration with SM neutrinos occurs at temperatures near the dark fermion mass. For masses below an MeV, this naturally occurs after nucleosynthesis and opens the door to a variety of dark sector dynamics with observable imprints on the CMB and large scale structure, and with potential relevance to the tensions in H0 and S8.more » « less
- 
            Abstract We generalize the recently proposed Stepped Partially Acoustic Dark Matter (SPartAcous) model by including additional massless degrees of freedom in the dark radiation sector. We fit SPartAcous and its generalization against cosmological precision data from the cosmic microwave background, baryon acoustic oscillations, large-scale structure, supernovae type Ia, and Cepheid variables. We find that SPartAcous significantly reduces theH0tension but does not provide any meaningful improvement of theS8tension, while the generalized model succeeds in addressing both tensions, and provides a better fit than ΛCDM and other dark sector models proposed to address the same tensions. In the generalized model,H0can be raised to 71.4 km/s/Mpc (the 95% upper limit), reducing the tension, if the fitted data does not include the direct measurement from the SH0ES collaboration, and to 73.7 km/s/Mpc (95% upper limit) if it does. A version ofCLASSthat has been modified to analyze this model is publicly available athttps://github.com/ManuelBuenAbad/class_spartacous.more » « less
- 
            Abstract A phase shift in the acoustic oscillations of cosmic microwave background (CMB) spectra is a characteristic signature for the presence of non-photon radiation propagating differently from photons, even when the radiation couples to the Standard Model particles solely gravitationally. It is well-established that compared to the presence of free-streaming radiation, CMB spectra shift to higherℓ-modes in the presence of self-interacting non-photon radiation such as neutrinos and dark radiation. In this study, we further demonstrate that the scattering of non-photon radiation with dark matter can further amplify this phase shift. We show that when the energy density of the interacting radiation surpasses that of interacting dark matter around matter-radiation equality, the phase shift enhancement is proportional to the interacting dark matter abundance and remains insensitive to the radiation energy density. Given the presence of dark matter-radiation interaction, this additional phase shift emerges as a generic signature of models featuring an interacting dark sector or neutrino-dark matter scattering. Using neutrino-dark matter scattering as an example, we numerically calculate the amplified phase shift and offer an analytical interpretation of the result by modeling photon and neutrino perturbations with coupled harmonic oscillators. This framework also explains the phase shift contrast between self-interacting and free-streaming neutrinos. Fitting models with neutrino-dark matter or dark radiation-dark matter interactions to CMB and large-scale structure data, we validate the presence of the enhanced phase shift, affirmed by the linear dependence observed between the preferred regions of the sound horizon angleθsand interacting dark matter abundance. An increasedθsand a suppressed matter power spectrum is therefore a generic feature of models containing dark matter scattering with abundant dark radiation.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    