skip to main content


Title: The UNCOVER Survey: A First-look HST + JWST Catalog of 60,000 Galaxies near A2744 and beyond
Abstract

In 2022 November, the James Webb Space Telescope (JWST) returned deep near-infrared images of A2744—a powerful lensing cluster capable of magnifying distant, incipient galaxies beyond it. Together with existing Hubble Space Telescope (HST) imaging, this publicly available data set opens a fundamentally new discovery space to understand the remaining mysteries of the formation and evolution of galaxies across cosmic time. In this work, we detect and measure some 60,000 objects across the 49 arcmin2JWST footprint down to a 5σlimiting magnitude of ∼30 mag in 0.″32 apertures. Photometry is performed using circular apertures on images matched to the point-spread function (PSF) of the reddest NIRCam broad band, F444W, and cleaned of bright cluster galaxies and the related intracluster light. To give an impression of the photometric performance, we measure photometric redshifts and achieve aσNMAD≈ 0.03 based on known, but relatively small, spectroscopic samples. With this paper, we publicly release our HST and JWST PSF-matched photometric catalog with optimally assigned aperture sizes for easy use, along with single aperture catalogs, photometric redshifts, rest-frame colors, and individual magnification estimates. These catalogs will set the stage for efficient and deep spectroscopic follow up of some of the first JWST-selected samples in summer of 2023.

 
more » « less
NSF-PAR ID:
10481718
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal Supplement Series
Volume:
270
Issue:
1
ISSN:
0067-0049
Format(s):
Medium: X Size: Article No. 7
Size(s):
Article No. 7
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present a catalog of 717 candidate galaxies atz> 8 selected from 125 square arcmin of NIRCam imaging as part of the JWST Advanced Deep Extragalactic Survey (JADES). We combine the full JADES imaging data set with data from the JWST Extragalactic Medium Survey and First Reionization Epoch Spectroscopic COmplete Survey (FRESCO) along with extremely deep existing observations from Hubble Space Telescope (HST)/Advanced Camera for Surveys (ACS) for a final filter set that includes 15 JWST/NIRCam filters and five HST/ACS filters. The high-redshift galaxy candidates were selected from their estimated photometric redshifts calculated using a template-fitting approach, followed by visual inspection from seven independent reviewers. We explore these candidates in detail, highlighting interesting resolved or extended sources, sources with very red long-wavelength slopes, and our highest-redshift candidates, which extend tozphot∼ 18. Over 93% of the sources are newly identified from our deep JADES imaging, including 31 new galaxy candidates atzphot> 12. We also investigate potential contamination by stellar objects, and do not find strong evidence from spectral energy distribution fitting that these faint high-redshift galaxy candidates are low-mass stars. Using 42 sources in our sample with measured spectroscopic redshifts from NIRSpec and FRESCO, we find excellent agreement to our photometric redshift estimates, with no catastrophic outliers and an average difference of 〈Δz=zphotzspec〉 = 0.26. These sources comprise one of the most robust samples for probing the early buildup of galaxies within the first few hundred million years of the Universe’s history.

     
    more » « less
  2. ABSTRACT

    We present reduced images and catalogues of photometric and emission-line data (∼230 000 and ∼8000 sources, respectively) for the WFC3 (Wide Field Camera 3) Infrared Spectroscopic Parallel (WISP) survey. These data are made publicly available on the Mikulski Archive for Space Telescopes and include reduced images from various facilities: ground-based ugri, Hubble Space Telescope (HST) WFC3, and Spitzer IRAC (Infrared Array Camera). Coverage in at least one additional filter beyond the WFC3/IR data are available for roughly half of the fields (227 out of 483), with ∼20 per cent (86) having coverage in six or more filters from u band to IRAC 3.6 $\mu$m (0.35–3.6 $\mu$m). For the lower spatial resolution (and shallower) ground-based and IRAC data, we perform PSF (point spread function)-matched, prior-based, deconfusion photometry (i.e. forced-photometry) using the tphot software to optimally extract measurements or upper limits. We present the methodology and software used for the WISP emission-line detection and visual inspection. The former adopts a continuous wavelet transformation that significantly reduces the number of spurious sources as candidates before the visual inspection stage. We combine both WISP catalogues and perform spectral energy distribution fitting on galaxies with reliable spectroscopic redshifts and multiband photometry to measure their stellar masses. We stack WISP spectra as functions of stellar mass and redshift and measure average emission-line fluxes and ratios. We find that WISP emission-line sources are typically ‘normal’ star-forming galaxies based on the mass–excitation diagram ([O iii]/Hβ versus M⋆; 0.74 < zgrism < 2.31), the galaxy main sequence (SFR versus M⋆; 0.30 < zgrism < 1.45), S32 ratio versus M⋆ (0.30 < zgrism < 0.73), and O32 and R23 ratios versus M⋆ (1.27 < zgrism < 1.45).

     
    more » « less
  3. Abstract

    We present a 0.3–4.5μm 16-band photometric catalog for the Spitzer/HETDEX Exploratory Large-Area (SHELA) survey. SHELA covers an ∼27 deg2field within the footprint of the Hobby–Eberly Telescope Dark Energy Experiment (HETDEX). Here we present new DECam imaging and anrizKsband–selected catalog of four million sources extracted using a fully model-based approach. We validate our photometry by comparing with the model-based DECam Legacy Survey. We analyze the differences between model-based and aperture photometry by comparing with the previous SHELA catalog, finding that our model-based photometry can measure point sources to fainter fluxes and better capture the full emission of resolved sources. The catalog is 80% (50%) complete atriz∼ 24.7 (25.1) AB mag, and the optical photometry reaches a 5σdepth of ∼25.5 AB mag. We measure photometric redshifts and achieve a 1σscatter of Δz/(1 +z) of 0.04 with available spectroscopic redshifts at 0 ≤z≤ 1. This large-area, multiwavelength photometric catalog, combined with spectroscopic information from HETDEX, will enable a wide range of extragalactic science investigations.

     
    more » « less
  4. null (Ed.)
    We present a new prospective analysis of deep multi-band imaging with the James Webb Space Telescope (JWST). In this work, we investigate the recovery of high-redshift 5 <   z  <  12 galaxies through extensive image simulations of accepted JWST programs, including the Early Release Science in the EGS field and the Guaranteed Time Observations in the HUDF. We introduced complete samples of ∼300 000 galaxies with stellar masses of log( M * / M ⊙ ) > 6 and redshifts of 0 <   z  <  15, as well as galactic stars, into realistic mock NIRCam, MIRI, and HST images to properly describe the impact of source blending. We extracted the photometry of the detected sources, as in real images, and estimated the physical properties of galaxies through spectral energy distribution fitting. We find that the photometric redshifts are primarily limited by the availability of blue-band and near-infrared medium-band imaging. The stellar masses and star formation rates are recovered within 0.25 and 0.3 dex, respectively, for galaxies with accurate photometric redshifts. Brown dwarfs contaminating the z  >  5 galaxy samples can be reduced to < 0.01 arcmin −2 with a limited impact on galaxy completeness. We investigate multiple high-redshift galaxy selection techniques and find that the best compromise between completeness and purity at 5 <   z  <  10 using the full redshift posterior probability distributions. In the EGS field, the galaxy completeness remains higher than 50% at magnitudes m UV  <  27.5 and at all redshifts, and the purity is maintained above 80 and 60% at z  ≤ 7 and 10, respectively. The faint-end slope of the galaxy UV luminosity function is recovered with a precision of 0.1–0.25, and the cosmic star formation rate density within 0.1 dex. We argue in favor of additional observing programs covering larger areas to better constrain the bright end. 
    more » « less
  5. Abstract

    The first deep field images from the James Webb Space Telescope (JWST) of the galaxy cluster SMACS J0723.3-7327 reveal a wealth of new lensed images at uncharted infrared wavelengths, with unprecedented depth and resolution. Here we securely identify 14 new sets of multiply imaged galaxies totaling 42 images, adding to the five sets of bright and multiply imaged galaxies already known from Hubble Space Telescope data. We find examples of arcs crossing critical curves, allowing detailed community follow-up, such as JWST spectroscopy for precise redshift determinations, and measurements of the chemical abundances and of the detailed internal gas dynamics of very distant, young galaxies. One such arc contains a pair of compact knots that are magnified by a factor of hundreds, and features a microlensed transient. We also detect an Einstein cross candidate only visible thanks to JWST’s superb resolution. Our parametric lens model is available through the following link (https://www.dropbox.com/sh/gwup2lvks0jsqe5/AAC2RRSKce0aX-lIFCc9vhBXa?dl=0) and will be regularly updated using additional spectroscopic redshifts. The model is constrained by 16 of these sets of multiply imaged galaxies, three of which have spectroscopic redshifts, and reproduces the multiple images to better than an rms of 0.″5, allowing for accurate magnification estimates of high-redshift galaxies. The intracluster light extends beyond the cluster members, exhibiting large-scale features that suggest a significant past dynamical disturbance. This work represents a first taste of the enhanced power JWST will have for lensing-related science.

     
    more » « less