skip to main content


Title: Differentiable Earth mover’s distance for data compression at the high-luminosity LHC
Abstract

The Earth mover’s distance (EMD) is a useful metric for image recognition and classification, but its usual implementations are not differentiable or too slow to be used as a loss function for training other algorithms via gradient descent. In this paper, we train a convolutional neural network (CNN) to learn a differentiable, fast approximation of the EMD and demonstrate that it can be used as a substitute for computing-intensive EMD implementations. We apply this differentiable approximation in the training of an autoencoder-inspired neural network (encoder NN) for data compression at the high-luminosity LHC at CERN The goal of this encoder NN is to compress the data while preserving the information related to the distribution of energy deposits in particle detectors. We demonstrate that the performance of our encoder NN trained using the differentiable EMD CNN surpasses that of training with loss functions based on mean squared error.

 
more » « less
NSF-PAR ID:
10481750
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Machine Learning: Science and Technology
Volume:
4
Issue:
4
ISSN:
2632-2153
Format(s):
Medium: X Size: Article No. 045058
Size(s):
["Article No. 045058"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Mass spectrometry imaging (MSI) is widely used for the label-free molecular mapping of biological samples. The identification of co-localized molecules in MSI data is crucial to the understanding of biochemical pathways. One of key challenges in molecular colocalization is that complex MSI data are too large for manual annotation but too small for training deep neural networks. Herein, we introduce a self-supervised clustering approach based on contrastive learning, which shows an excellent performance in clustering of MSI data. We train a deep convolutional neural network (CNN) using MSI data from a single experiment without manual annotations to effectively learn high-level spatial features from ion images and classify them based on molecular colocalizations. We demonstrate that contrastive learning generates ion image representations that form well-resolved clusters. Subsequent self-labeling is used to fine-tune both the CNN encoder and linear classifier based on confidently classified ion images. This new approach enables autonomous and high-throughput identification of co-localized species in MSI data, which will dramatically expand the application of spatial lipidomics, metabolomics, and proteomics in biological research. 
    more » « less
  2. Abstract

    Machine learning (ML) tools are able to learn relationships between the inputs and outputs of large complex systems directly from data. However, for time-varying systems, the predictive capabilities of ML tools degrade if the systems are no longer accurately represented by the data with which the ML models were trained. For complex systems, re-training is only possible if the changes are slow relative to the rate at which large numbers of new input-output training data can be non-invasively recorded. In this work, we present an approach to deep learning for time-varying systems that does not require re-training, but uses instead an adaptive feedback in the architecture of deep convolutional neural networks (CNN). The feedback is based only on available system output measurements and is applied in the encoded low-dimensional dense layers of the encoder-decoder CNNs. First, we develop an inverse model of a complex accelerator system to map output beam measurements to input beam distributions, while both the accelerator components and the unknown input beam distribution vary rapidly with time. We then demonstrate our method on experimental measurements of the input and output beam distributions of the HiRES ultra-fast electron diffraction (UED) beam line at Lawrence Berkeley National Laboratory, and showcase its ability for automatic tracking of the time varying photocathode quantum efficiency map. Our method can be successfully used to aid both physics and ML-based surrogate online models to provide non-invasive beam diagnostics.

     
    more » « less
  3. Abstract

    Adaptive ‘life-long’ learning at the edge and during online task performance is an aspirational goal of artificial intelligence research. Neuromorphic hardware implementing spiking neural networks (SNNs) are particularly attractive in this regard, as their real-time, event-based, local computing paradigm makes them suitable for edge implementations and fast learning. However, the long and iterative learning that characterizes state-of-the-art SNN training is incompatible with the physical nature and real-time operation of neuromorphic hardware. Bi-level learning, such as meta-learning is increasingly used in deep learning to overcome these limitations. In this work, we demonstrate gradient-based meta-learning in SNNs using the surrogate gradient method that approximates the spiking threshold function for gradient estimations. Because surrogate gradients can be made twice differentiable, well-established, and effective second-order gradient meta-learning methods such as model agnostic meta learning (MAML) can be used. We show that SNNs meta-trained using MAML perform comparably to conventional artificial neural networks meta-trained with MAML on event-based meta-datasets. Furthermore, we demonstrate the specific advantages that accrue from meta-learning: fast learning without the requirement of high precision weights or gradients, training-to-learn with quantization and mitigating the effects of approximate synaptic plasticity rules. Our results emphasize how meta-learning techniques can become instrumental for deploying neuromorphic learning technologies on real-world problems.

     
    more » « less
  4. Abstract

    In the last decade, much work in atmospheric science has focused on spatial verification (SV) methods for gridded prediction, which overcome serious disadvantages of pixelwise verification. However, neural networks (NN) in atmospheric science are almost always trained to optimize pixelwise loss functions, even when ultimately assessed with SV methods. This establishes a disconnect between model verification during versus after training. To address this issue, we develop spatially enhanced loss functions (SELF) and demonstrate their use for a real-world problem: predicting the occurrence of thunderstorms (henceforth, “convection”) with NNs. In each SELF we use either a neighborhood filter, which highlights convection at scales larger than a threshold, or a spectral filter (employing Fourier or wavelet decomposition), which is more flexible and highlights convection at scales between two thresholds. We use these filters to spatially enhance common verification scores, such as the Brier score. We train each NN with a different SELF and compare their performance at many scales of convection, from discrete storm cells to tropical cyclones. Among our many findings are that (i) for a low or high risk threshold, the ideal SELF focuses on small or large scales, respectively; (ii) models trained with a pixelwise loss function perform surprisingly well; and (iii) nevertheless, models trained with a spectral filter produce much better-calibrated probabilities than a pixelwise model. We provide a general guide to using SELFs, including technical challenges and the final Python code, as well as demonstrating their use for the convection problem. To our knowledge this is the most in-depth guide to SELFs in the geosciences.

    Significance Statement

    Gridded predictions, in which a quantity is predicted at every pixel in space, should be verified with spatially aware methods rather than pixel by pixel. Neural networks (NN), which are often used for gridded prediction, are trained to minimize an error value called the loss function. NN loss functions in atmospheric science are almost always pixelwise, which causes the predictions to miss rare events and contain unrealistic spatial patterns. We use spatial filters to enhance NN loss functions, and we test our novel spatially enhanced loss functions (SELF) on thunderstorm prediction. We find that different SELFs work better for different scales (i.e., different-sized thunderstorm complexes) and that spectral filters, one of the two filter types, produce unexpectedly well calibrated thunderstorm probabilities.

     
    more » « less
  5. Social media platforms are playing increasingly critical roles in disaster response and rescue operations. During emergencies, users can post rescue requests along with their addresses on social media, while volunteers can search for those messages and send help. However, efficiently leveraging social media in rescue operations remains challenging because of the lack of tools to identify rescue request messages on social media automatically and rapidly. Analyzing social media data, such as Twitter data, relies heavily on Natural Language Processing (NLP) algorithms to extract information from texts. The introduction of bidirectional transformers models, such as the Bidirectional Encoder Representations from Transformers (BERT) model, has significantly outperformed previous NLP models in numerous text analysis tasks, providing new opportunities to precisely understand and classify social media data for diverse applications. This study developed and compared ten VictimFinder models for identifying rescue request tweets, three based on milestone NLP algorithms and seven BERT-based. A total of 3191 manually labeled disaster-related tweets posted during 2017 Hurricane Harvey were used as the training and testing datasets. We evaluated the performance of each model by classification accuracy, computation cost, and model stability. Experiment results show that all BERT-based models have significantly increased the accuracy of categorizing rescue-related tweets. The best model for identifying rescue request tweets is a customized BERT-based model with a Convolutional Neural Network (CNN) classifier. Its F1-score is 0.919, which outperforms the baseline model by 10.6%. The developed models can promote social media use for rescue operations in future disaster events. 
    more » « less