skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Title: Orthomosaic Image and Digital Surface Model for the Swan Lake Drained Lake Basin (MP64) Beaver Dams, Seward Peninsula, Alaska, 27 March 2022
Emergence of beavers as ecosystem engineers in the New Arctic project focuses on establishing field sites at tundra beaver ponds to study the implications of beaver engineering on hydrology and permafrost. Drones are being used to collect baseline data and track beaver dam building and pond evolution over time. This dataset consists of an orthomosaic and digital surface model (DSM) derived from drone surveys on 27 March 2022 at the Swan Lake Drained Lake Basin, MP64, site on the Seward Peninsula, Alaska. 577 digital images were acquired from a DJI Phantom 4 Real-Time Kinematic (DJI P4RTK) quadcopter with a DJI D-RTK 2 Mobile Base Station. The mapped area was around 90 hectares (ha). The drone system was flown at 120 meters (m) above ground level (agl) and flight speeds varied from 8-9 meters/second (m/s). The orientation of the camera was set to 90 degrees (i.e. looking straight down). The along-track overlap and across-track overlap of the mission were set at 80% and 70%, respectively. All images were processed in the software Pix4D Mapper (v. 4.8.4) using the standard 3D Maps workflow and the accurate geolocation and orientation calibration method to produce the orthophoto mosaic and digital surface model at spatial resolutions of 5 and 10 centimeters (cm), respectively. Elevation information derived over waterbodies is noisy and does not represent the surface elevation of the feature. A Leica Viva differential global positioning system (GPS) provided ground control for the mission and the data were post-processed to WGS84 UTM Zone 3 North in Ellipsoid Heights (meters).  more » « less
Award ID(s):
1850578
NSF-PAR ID:
10481816
Author(s) / Creator(s):
;
Publisher / Repository:
NSF Arctic Data Center
Date Published:
Subject(s) / Keyword(s):
["arctic","beavers","alaska","tundra","pond","stream","permafrost","thermokarst","drone"]
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Emergence of beavers as ecosystem engineers in the New Arctic project focuses on establishing field sites at tundra beaver ponds to study the implications of beaver engineering on hydrology and permafrost. Drones are being used to collect baseline data and track beaver dam building and pond evolution over time. This dataset consists of an orthomosaic and digital surface model (DSM) derived from drone surveys on 03 August 2021 at the Swan Lake Drained Lake Basin, MP64, site on the Seward Peninsula, Alaska. 757 digital images were acquired from a DJI Phantom 4 Real-Time Kinematic (DJI P4RTK)quadcopter with a DJI D-RTK 2 Mobile Base Station. The mapped area was around 110 hectares (ha). The drone system was flown at 120 meters (m) above ground level (agl) and flight speeds varied from 8-9 meters/second (m/s). The orientation of the camera was set to 90 degrees (i.e. looking straight down). The along-track overlap and across-track overlap of the mission were set at 80% and 70%, respectively. All images were processed in the software Pix4D Mapper (v. 4.6.4) using the standard 3D Maps workflow and the accurate geolocation and orientation calibration method to produce the orthophoto mosaic and digital surface model at spatial resolutions of 5 and 10 centimeters (cm), respectively. Elevation information derived over waterbodies is noisy and does not represent the surface elevation of the feature. A Leica Viva differential global positioning system (GPS) provided ground control for the mission and the data were post-processed to WGS84 UTM Zone 3 North in Ellipsoid Heights (meters). 
    more » « less
  2. Emergence of beavers as ecosystem engineers in the New Arctic project focuses on establishing field sites at tundra beaver ponds to study the implications of beaver engineering on hydrology and permafrost. Drones are being used to collect baseline data and track beaver dam building and pond evolution over time. This dataset consists of an orthomosaic and digital surface model (DSM) derived from drone surveys on 12 August 2022 at the Swan Lake Drained Lake Basin, MP64, site on the Seward Peninsula, Alaska. 910 digital images were acquired from a DJI Phantom 4 Real-Time Kinematic (DJI P4RTK) quadcopter with a DJI D-RTK 2 Mobile Base Station. The mapped area was around 140 ha. The drone system was flown at 120 meters (m) above ground level (agl) and flight speeds varied from 8-9 meters/second (m/s). The orientation of the camera was set to 90 degrees (i.e. looking straight down). The along-track overlap and across-track overlap of the mission were set at 80% and 70%, respectively. All images were processed in the software Pix4D Mapper (v. 4.7.5) using the standard 3D Maps workflow and the accurate geolocation and orientation calibration method to produce the orthophoto mosaic and digital surface model at spatial resolutions of 5 and 10 centimeter (cm), respectively. Elevation information derived over waterbodies is noisy and does not represent the surface elevation of the feature. A Leica Viva differential global positioning system (GPS) provided ground control for the mission and the data were post-processed to WGS84 UTM Zone 3 North in Ellipsoid Heights (meters). 
    more » « less
  3. Emergence of beavers as ecosystem engineers in the New Arctic project focuses on establishing field sites at tundra beaver ponds to study the implications of beaver engineering on hydrology and permafrost. Drones are being used to collect baseline data and track beaver dam building and pond evolution over time. This dataset consists of an orthomosaic and digital surface model (DSM) derived from drone surveys on 12 August 2022 at the Swan Lake Creek site on the Seward Peninsula, Alaska. 977 digital images were acquired from a DJI Phantom 4 Real-Time Kinematic (DJI P4RTK)quadcopter with a DJI D-RTK 2 Mobile Base Station. The mapped area was around 60 hectares (ha). The drone system was flown at 120 meters (m) above ground level (agl) and flight speeds varied from 8-9 meters/second (m/s). The orientation of the camera was set to 90 degrees (i.e. looking straight down). The along-track overlap and across-track overlap of the mission were set at 80% and 70%, respectively. All images were processed in the software Pix4D Mapper (v. 4.7.5) using the standard 3D Maps workflow and the accurate geolocation and orientation calibration method to produce the orthophoto mosaic and digital surface model at spatial resolutions of 5 and 10 centimeters (cm), respectively. Elevation information derived over waterbodies is noisy and does not represent the surface elevation of the feature. A Leica Viva differential global positioning system (GPS) provided ground control for the mission and the data were post-processed to WGS84 UTM Zone 3 North in Ellipsoid Heights (meters). 
    more » « less
  4. Emergence of beavers as ecosystem engineers in the New Arctic project focuses on establishing field sites at tundra beaver ponds to study the implications of beaver engineering on hydrology and permafrost. Drones are being used to collect baseline data and track beaver dam building and pond evolution over time. This dataset consists of an orthomosaic and digital surface model (DSM) derived from drone surveys on 27 March 2022 at the Swan Lake Creek site on the Seward Peninsula, Alaska. 1040 digital images were acquired from a DJI Phantom 4 Real-Time Kinematic (DJI P4RTK) quadcopter with a DJI D-RTK 2 Mobile Base Station. The mapped area was around 60 hectares (ha). The drone system was flown at 120 meters (m) above ground level (agl) and flight speeds varied from 8-9 meters/second (m/s). The orientation of the camera was set to 90 degrees (i.e. looking straight down). The along-track overlap and across-track overlap of the mission were set at 80% and 70%, respectively. All images were processed in the software Pix4D Mapper (v. 4.7.5) using the standard 3D Maps workflow and the accurate geolocation and orientation calibration method to produce the orthophoto mosaic and digital surface model at spatial resolutions of 5 and 10 centimeters (cm), respectively. Elevation information derived over waterbodies is noisy and does not represent the surface elevation of the feature. A Leica Viva differential global positioning system (GPS) provided ground control for the mission and the data were post-processed to WGS84 UTM Zone 3 North in Ellipsoid Heights (meters). 
    more » « less
  5. Emergence of beavers as ecosystem engineers in the New Arctic project focuses on establishing field sites at tundra beaver ponds to study the implications of beaver engineering on hydrology and permafrost. Drones are being used to collect baseline data and track beaver dam building and pond evolution over time. This dataset consists of a multispectral orthomosaic derived from drone surveys on 12 August 2022 at the Swan Lake Drained Lake Basin, MP64, site on the Seward Peninsula, Alaska. 2286 digital images from five spectral bands were acquired from a DJI Phantom 4 Real-Time Kinematic (DJI P4RTK) quadcopter with a DJI D-RTK 2 Mobile Base Station. The mapped area was around 27 hectares (ha). The drone system was flown at 120 meters (m) above ground level (agl) and images were captured using the hover and capture at point mode. The orientation of the camera was set to 90 degrees (i.e. looking straight down). The along-track overlap and across-track overlap of the mission were set at 80% and 70%, respectively. All images were processed in the software Pix4D Mapper (v. 4.8.4) using the standard 3D Maps workflow and the accurate geolocation and orientation calibration method to produce the multispectral orthophoto mosaic at a spatial resolution of 10 centimeters (cm). Images of a MicaSense calibrated reflectance panel were used for radiometric processing and calibration of each spectral band in the Index Calculator in Pix4D. A Leica Viva differential global positioning system (GPS) provided ground control for the mission and the data were post-processed to WGS84 UTM Zone 3 North. 
    more » « less