skip to main content


Title: Orbits and dynamical masses for the active Hyades multiple system HD 284163
ABSTRACT

We report near-infrared long-baseline interferometric observations of the Hyades multiple system HD 284163, made with the Center for High Angular Resolution Astronomy array, as well as almost 43 yr of high-resolution spectroscopic monitoring at the Center for Astrophysics. Both types of observations resolve the 2.39 d inner binary, and also an outer companion in a 43.1 yr orbit. Our observations, combined with others from the literature, allow us to solve for the 3D inner and outer orbits, which are found to be at nearly right angles to each other. We determine the dynamical masses of the three stars (good to better than 1.4 per cent for the inner pair), as well as the orbital parallax. The secondary component (0.5245 ± 0.0047 M⊙) is now the lowest mass star with a dynamical mass measurement in the cluster. A comparison of these measurements with current stellar evolution models for the age and metallicity of the Hyades shows good agreement. All three stars display significant levels of chromospheric activity, consistent with the classification of HD 284163 as an RS CVn object. We present evidence that a more distant fourth star is physically associated, making this a hierarchical quadruple system.

 
more » « less
NSF-PAR ID:
10481838
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
527
Issue:
3
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 8907-8920
Size(s):
["p. 8907-8920"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Aims. HD 206893 is a nearby debris disk star that hosts a previously identified brown dwarf companion with an orbital separation of ∼10 au. Long-term precise radial velocity (RV) monitoring, as well as anomalies in the system proper motion, has suggested the presence of an additional, inner companion in the system. Methods. Using information from ongoing precision RV measurements with the HARPS spectrograph, as well as Gaia host star astrometry, we have undertaken a multi-epoch search for the purported additional planet using the VLTI/GRAVITY instrument. Results. We report a high-significance detection over three epochs of the companion HD 206893c, which shows clear evidence for Keplerian orbital motion. Our astrometry with ∼50−100 μarcsec precision afforded by GRAVITY allows us to derive a dynamical mass of 12.7$ ^{+1.2}_{-1.0} $ M Jup and an orbital separation of 3.53$ ^{+0.08}_{-0.06} $ au for HD 206893c. Our fits to the orbits of both companions in the system use both Gaia astrometry and RVs to also provide a precise dynamical estimate of the previously uncertain mass of the B component, and therefore allow us to derive an age of 155 ± 15 Myr for the system. We find that theoretical atmospheric and evolutionary models that incorporate deuterium burning for HD 206893c, parameterized by cloudy atmosphere models as well as a “hybrid sequence” (encompassing a transition from cloudy to cloud-free), provide a good simultaneous fit to the luminosity of both HD 206893B and c. Thus, accounting for both deuterium burning and clouds is crucial to understanding the luminosity evolution of HD 206893c. Conclusions. In addition to using long-term RV information, this effort is an early example of a direct imaging discovery of a bona fide exoplanet that was guided in part by Gaia astrometry. Utilizing Gaia astrometry is expected to be one of the primary techniques going forward for identifying and characterizing additional directly imaged planets. In addition, HD 206893c is an example of an object narrowly straddling the deuterium-burning limit but unambiguously undergoing deuterium burning. Additional discoveries like this may therefore help clarify the discrimination between a brown dwarf and an extrasolar planet. Lastly, this discovery is another example of the power of optical interferometry to directly detect and characterize extrasolar planets where they form, at ice-line orbital separations of 2−4 au. 
    more » « less
  2. Abstract

    Castor is a system of six stars in which the two brighter objects, Castor A and B, revolve around each other every ∼450 yr and are both short-period spectroscopic binaries. They are attended by the more distant Castor C, which is also a binary. Here we report interferometric observations with the Center for High Angular Resolution Astronomy (CHARA) array that spatially resolve the companions in Castor A and B for the first time. We complement these observations with new radial velocity measurements of A and B spanning 30 yr, with the Hipparcos intermediate data, and with existing astrometric observations of the visual AB pair obtained over the past three centuries. We perform a joint orbital solution to solve simultaneously for the three-dimensional orbits of Castor A and B as well as the AB orbit. We find that they are far from being coplanar: the orbit of A is nearly at right angles (92°) relative to the wide orbit, and that of B is inclined about 59° compared to AB. We determine the dynamical masses of the four stars in Castor A and B to a precision better than 1%. We also determine the radii of the primary stars of both subsystems from their angular diameters measured with the CHARA array, and use them together with stellar evolution models to infer an age for the system of 290 Myr. The new knowledge of the orbits enables us to measure the slow motion of Castor C as well, which may assist future studies of the dynamical evolution of this remarkable sextuple system.

     
    more » « less
  3. Abstract

    We present the first estimate of the intrinsic binary fraction of young stars across the central ≈0.4 pc surrounding the supermassive black hole (SMBH) at the Milky Way Galactic center (GC). This experiment searched for photometric variability in 102 spectroscopically confirmed young stars, using 119 nights of 10″ wide adaptive optics imaging observations taken at W. M. Keck Observatory over 16 yr in theK-[2.1μm] andH-[1.6μm] bands. We photometrically detected three binary stars, all of which are situated more than 1″ (0.04 pc) from the SMBH and one of which, S2-36, is newly reported here with spectroscopic confirmation. All are contact binaries or have photometric variability originating from stellar irradiation. To convert the observed binary fraction into an estimate of the underlying binary fraction, we determined the experimental sensitivity through detailed light-curve simulations, incorporating photometric effects of eclipses, irradiation, and tidal distortion in binaries. The simulations assumed a population of young binaries, with stellar ages (4 Myr) and masses matched to the most probable values measured for the GC young star population, and underlying binary system parameters (periods, mass ratios, and eccentricities) similar to those of local massive stars. As might be expected, our experimental sensitivity decreases for eclipses narrower in phase. The detections and simulations imply that the young, massive stars in the GC have a stellar binary fraction ≥71% (68% confidence), or ≥42% (95% confidence). This inferred GC young star binary fraction is consistent with that typically seen in young stellar populations in the solar neighborhood. Furthermore, our measured binary fraction is significantly higher than that recently reported by Chu et al. based on radial velocity measurements for stars ≲1″ of the SMBH. Constrained with these two studies, the probability that the same underlying young star binary fraction extends across the entire region is <1.4%. This tension provides support for a radial dependence of the binary star fraction, and therefore, for the dynamical predictions of binary merger and evaporation events close to the SMBH.

     
    more » « less
  4. Abstract

    We present Atacama Large Millimeter/submillimeter Array observations with a 800 au resolution and radiative-transfer modeling of the inner part (r≈ 6000 au) of the ionized accretion flow around a compact star cluster in formation at the center of the luminous ultracompact Hiiregion G10.6-0.4. We modeled the flow with an ionized Keplerian disk with and without radial motions in its outer part, or with an external Ulrich envelope. The Markov Chain Monte Carlo fits to the data give total stellar massesMfrom 120 to 200M, with much smaller ionized-gas massesMion-gas= 0.2–0.25M. The stellar mass is distributed within the gravitational radiusRg≈ 1000 to 1500 au, where the ionized gas is bound. The viewing inclination angle from the face-on orientation isi= 49°–56°. Radial motions at radiir>Rgconverge tovr,0≈ 8.7 km s−1, or about the speed of sound of ionized gas, indicating that this gas is marginally unbound at most. From additional constraints on the ionizing-photon rate and far-IR luminosity of the region, we conclude that the stellar cluster consists of a few massive stars withMstar= 32–60M, or one star in this range of masses accompanied by a population of lower-mass stars. Any active accretion of ionized gas onto the massive (proto)stars is residual. The inferred cluster density is very large, comparable to that reported at similar scales in the Galactic center. Stellar interactions are likely to occur within the next million years.

     
    more » « less
  5. Abstract V907 Scorpii is a unique triple system in which the inner binary component has been reported to have switched on and off eclipses several times in modern history. In spite of its peculiarity, observational data on this system are surprisingly scarce. Here we make use of the recent Transiting Exoplanet Survey Satellite observations, as well as our own photometric and spectroscopic data, to expand the overall data set and study the V907 Sco system in more detail. Our analysis provides both new and improved values for several of its fundamental parameters: (i) the masses of the stars in the eclipsing binary are 2.74 ± 0.02 M ⊙ and 2.56 ± 0.02 M ⊙ ; and (ii) the third component is a solar-type star with mass 1.06 − 0.10 + 0.11 M ⊙ (90% C.L.), orbiting the binary on an elongated orbit with an eccentricity of 0.47 ± 0.02 and a period of 142.01 ± 0.05 days. The intermittent intervals of time when eclipses of the inner binary are switched on and off are caused by a mutual 26 .° 2 − 2.2 + 2.6 inclination of the inner- and outer-orbit planes, and a favorable inclination of about 71° of the total angular momentum of the system. The nodal precession period is P ν = 63.5 − 2.6 + 3.3 yr. The inner binary will remain eclipsing for another ≃26 yr, offering an opportunity to significantly improve the parameters of the model. This is especially true during the next decade when the inner-orbit inclination will increase to nearly 90°. Further spectroscopic observations are also desirable, as they can help to improve constraints on the system’s orbital architecture and its physical parameters. 
    more » « less