skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Protist symbionts of termites: diversity, distribution, and coevolution
ABSTRACT The symbiosis between termites and their hindgut protists is mutually obligate and vertically inherited. It was established by the late Jurassic in the cockroach ancestors of termites as they transitioned to wood feeding. Since then, protist symbionts have been transmitted from host generation to host generation by proctodeal trophallaxis (anal feeding). The protists belong to multiple lineages within the eukaryotic superphylum Metamonada. Most of these lineages have evolved large cells with complex morphology, unlike the non‐termite‐associated Metamonada. The species richness and taxonomic composition of symbiotic protist communities varies widely across termite lineages, especially within the deep‐branching clade Teletisoptera. In general, closely related termites tend to harbour closely related protists, and deep‐branching termites tend to harbour deep‐branching protists, reflecting their broad‐scale co‐diversification. A closer view, however, reveals a complex distribution of protist lineages across hosts. Some protist taxa are common, some are rare, some are widespread, and some are restricted to a single host family or genus. Some protist taxa can be found in only a few, distantly related, host species. Thus, the long history of co‐diversification in this symbiosis has been complicated by lineage‐specific loss of symbionts, transfer of symbionts from one host lineage to another, and by independent diversification of the symbionts relative to their hosts. This review aims to introduce the biology of this important symbiosis and serve as a gateway to the diversity and systematics literature for both termites and protists. A searchable database with all termite‐protist occurrence records and taxonomic references is provided as a supplementary file to encourage and facilitate new research in this field.  more » « less
Award ID(s):
2045329
PAR ID:
10481911
Author(s) / Creator(s):
 
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Biological Reviews
Volume:
99
Issue:
2
ISSN:
1464-7931
Format(s):
Medium: X Size: p. 622-652
Size(s):
p. 622-652
Sponsoring Org:
National Science Foundation
More Like this
  1. Many host-symbiont relationships are maintained through vertical transmission. While maternal symbiont transmission is common, biparental transmission is relatively rare. Protist-dependent termites are eusocial insects that harbor obligate, cellulolytic protists in their hindguts. Protists are vertically transmitted by winged reproductives (alates), which disperse to biparentally establish new colonies. Vertical transmission in protist-dependent termites is imperfect, as the protist communities of alates are often incomplete. Biparental transmission of protists may make it unnecessary for alates to harbor complete communities, as colonies would acquire symbionts from both founding kings and queens, which together may harbor sufficient inoculums. To investigate this hypothesis, the protist communities of Coptotermes gestroi and C. formosanus alates and colonies were examined using 18S rRNA amplicon sequencing. The complete protist communities of these Coptotermes species are composed of five parabasalid species each. Whereas alates often harbored 1–3 protist species, nearly all colonies harbored 4–5 species, implying biparental transmission. The probability of each protist species being present in at least one founding alate was used to determine expected protist occurrence in colonies. For most protists, expected and observed occurrence did not significantly differ, suggesting that each protist species only needs to be harbored by one founding alate to be acquired by colonies. Our results imply that biparental transmission allows founding reproductives to transmit adequate symbiont communities to colonies despite their individual communities being incomplete. We discuss biparental transmission in protist-dependent termites in the context of other biparentally transmitted symbioses. 
    more » « less
  2. Portunoidea is a diverse lineage of ecologically and economically important marine crabs comprising 8 families and 14 subfamilies. Closely related portunid subfamilies Caphyrinae and Thalamitinae constitute some of this group’s greatest morphological and taxonomic diversity, and are the only known lineages to include symbiotic taxa. Emergence of symbiosis in decapods remains poorly studied and portunoid crabs provide an interesting, but often overlooked example. Yet the paucity of molecular phylogenetic data available for Portunoidea makes it challenging to investigate the evolution and systematics of the group. Phylogenetic analyses, though limited, suggest that many putative portunoid taxa are para- or polyphyletic. Here I augment existing molecular data—significantly increasing taxon sampling of Caphyrinae, Thalamitinae, and several disparate portunoid lineages—to investigate the phylogenetic origin of symbiosis within Portunoidea and reevaluate higher- and lower-level portunoid classifications. Phylogenetic analyses were carried out on sequences of H3, 28S rRNA, 16S rRNA, and CO1 for up to 168 portunoid taxa; this included, for the first time, molecular data from the genera Atoportunus , Brusinia , Caphyra , Coelocarcinus , Gonioinfradens , Raymanninus , and Thalamonyx . Results support the placement of all symbiotic taxa ( Caphyra , Lissocarcinus , and two Thalamita ) in a single clade derived within the thalamitine genus Thalamita . Caphyrina Paulson, 1875, nom. trans. is recognized here as a subtribe within the subfamily Thalamitinae. Results also support the following taxonomic actions: Cronius is reclassified as a thalamitine genus; Thalamonyx is reestablished as a valid genus; Goniosupradens is raised to the generic rank; and three new genera ( Zygita gen. nov., Thranita gen. nov., and Trierarchus gen. nov.) are described to accommodate some Thalamita s.l. taxa rendered paraphyletic by Caphyrina. A new diagnosis of Thalamitinae is provided. Results also support a more conservative classification of Portunoidea comprising three instead of eight extant families: Geryonidae (Geryonidae + Ovalipidae; new diagnosis provided), Carcinidae (Carcinidae + Pirimelidae + Polybiidae + Thiidae + Coelocarcinus ; new diagnosis provided) and Portunidae. Finally, 16s rRNA data suggests family Brusiniidae might not be a portunoid lineage. 
    more » « less
  3. Abstract Microbial symbionts associate with multicellular organisms on a continuum from facultative associations to mutual codependency. In the oldest intracellular symbioses there is exclusive vertical symbiont transmission, and co-diversification of symbiotic partners over millions of years. Such symbionts often undergo genome reduction due to low effective population sizes, frequent population bottlenecks, and reduced purifying selection. Here, we describe multiple independent acquisition events of closely related defensive symbionts followed by genome erosion in a group of Lagriinae beetles. Previous work in Lagria villosa revealed the dominant genome-eroded symbiont of the genus Burkholderia produces the antifungal compound lagriamide, protecting the beetle’s eggs and larvae from antagonistic fungi. Here, we use metagenomics to assemble 11 additional genomes of lagriamide-producing symbionts from 7 different host species within Lagriinae from 5 countries, to unravel the evolutionary history of this symbiotic relationship. In each host, we detected one dominant genome-eroded Burkholderia symbiont encoding the lagriamide biosynthetic gene cluster. However, we did not find evidence for host–symbiont co-diversification or for monophyly of the lagriamide-producing symbionts. Instead, our analyses support a single ancestral acquisition of the gene cluster followed by at least four independent symbiont acquisitions and subsequent genome erosion in each lineage. By contrast, a clade of plant-associated relatives retained large genomes but secondarily lost the lagriamide gene cluster. Our results, therefore, reveal a dynamic evolutionary history with multiple independent symbiont acquisitions characterized by a high degree of specificity and highlight the importance of the specialized metabolite lagriamide for the establishment and maintenance of this defensive symbiosis. 
    more » « less
  4. ABSTRACT Termites have a unique ability to effectively digest lignocellulose with the help of mutualistic symbionts. While gut bacteria and protozoa have been relatively well characterized in termites, the virome remains largely unexplored. Here, we report two genomes of microviruses (termite-associated microvirus-1 [TaMV-1] and termite-associated microvirus-2 [TaMV-2]) associated with the gut of Coptotermes formosanus . 
    more » « less
  5. Hajek, Ann (Ed.)
    Abstract Bark beetles and root weevils can impact forests through tree death on landscape scales. Recently, subterranean termites have been linked to these beetles via the presence of bluestain fungi (Ascomycota: Ophiostomataceae), which are vectored to trees by beetles. However, only a small subset of bluestain species have been examined. Here, we tested whether termite-bluestain association patterns in the field reflect termite feeding preference in laboratory choice trials. We documented the presence of four bluestain fungi (Leptographium procerum (W.B. Kendr.), L. terebrantis (Barras & Perry), Grosmannia huntii (Rob.-Jeffr.), and G. alacris (T.A. Duong, Z.W. de Beer & M.J. Wingf.) in the roots of 2,350 loblolly pine trees in the southeastern United States and whether termites were present or absent on these roots and paired this with laboratory choice feeding trials. Termites were found 2.5-fold on tree roots with at least one bluestain fungus present than tree roots without bluestain fungi. Although termites in this study and others were associated with L. procerum, L. terebrantis, and marginally G. huntii, termites only showed preferential feeding on wood inoculated with G. huntii in laboratory trials. This suggests that increased termite presence on wood with bluestain fungi may be driven by factors other than increased wood palatability. Termites could thus disproportionately affect wood turnover rates for specific pools (e.g., bark beetle and root weevil attacked trees) and in some cases (e.g., G. huntii) accelerate wood decomposition. This study supports the growing evidence that the association between subterranean termites and bluestain fungi is spatially and taxonomically widespread. 
    more » « less