Cracking resulting from drying (constrained dehydration) poses a significant challenge in geomaterials, impacting their mechanical performance. To address this problem, extensive efforts have been made to prevent or mitigate the occurrence of cracks, with recent attention focused on the utilisation of biopolymers. This letter investigates the influence of varying concentrations of the xanthan biopolymer on the mechanical response of granular materials, examining both macro and micro scales. The strength changes of the soil were evaluated through desiccation experiments, analysing the appearance and progression of failure on the macro scale. The findings of this study demonstrate that failure (cracking) progression is mitigated and eventually eliminated by increasing the concentration of the additive xanthan. Additionally, capillary experiments were conducted to assess the changes in attraction and the development of capillary bridges on the micro-scale. They indicate that the formation of hydrogel bridges significantly enhances particle attraction, thereby increasing its macro-resistance to cracking.
- Award ID(s):
- 2134488
- PAR ID:
- 10481924
- Editor(s):
- Amziane, S.; Merta, I.; Page, J.
- Publisher / Repository:
- Springer, RILEM Bookseries
- Date Published:
- Journal Name:
- International Conference on Bio-Based Building Materials
- Edition / Version:
- vol 45
- ISBN:
- 978-3-031-33464-1
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The use of calcined clays as supplementary cementitious materials provides the opportunity to significantly reduce the cement industry’s carbon burden; however, use at a global scale requires a deep understanding of the extraction and processing of the clays to be used, which will uncover routes to optimise their reactivity. This will enable increased usage of calcined clays as cement replacements, further improving the sustainability of concretes produced with them. Existing technologies can be adopted to produce calcined clays at an industrial scale in many regions around the world. This paper, produced by RILEM TC 282-CCL on calcined clays as supplementary cementitious materials (working group 2), focuses on the production of calcined clays, presents an overview of clay mining, and assesses the current state of the art in clay calcination technology, covering the most relevant aspects from the clay deposit to the factory gate. The energetics and associated carbon footprint of the calcination process are also discussed, and an outlook on clay calcination is presented, discussing the technological advancements required to fulfil future global demand for this material in sustainable infrastructure development.more » « less
-
Abstract Common adhesives for nonstructural applications are manufactured using petrochemicals and synthetic solvents. These adhesives are associated with environmental and health concerns because of their release of volatile organic compounds (VOCs). Biopolymer adhesives are an attractive alternative because of lower VOC emissions, but their strength is often insufficient. Existing mineral fillers can improve the strength of biopolymer adhesives but require the use of crosslinkers that lower process sustainability. This work introduces a novel approach to strengthen biopolymer adhesives through calcium carbonate biomineralization, which avoids the need for crosslinkers. Biomineral fillers produced by either microbially or enzymatically induced calcium carbonate precipitation (MICP and EICP, respectively) were precipitated within guar gum and soy protein biopolymers. Both, MICP and EICP, increased the strength of the biopolymer adhesives. The strength was further improved by optimizing the concentrations of bacteria, urease enzyme, and calcium. The highest strengths achieved were on par with current commercially available nonstructural adhesives. This study demonstrates the feasibility of using calcium carbonate biomineralization to improve the properties of biopolymer adhesives, which increases their potential viability as more sustainable adhesives.
-
null (Ed.)Natural biomacromolecules such as structural proteins and polysaccharides are composed of the basic building blocks of life: amino acids and carbohydrates. Understanding their molecular structure, self-assembly and interaction in solvents such as ionic liquids (ILs) is critical for unleashing a flora of new materials, revolutionizing the way we fabricate multi-structural and multi-functional systems with tunable physicochemical properties. Ionic liquids are superior to organic solvents because they do not produce unwanted by-products and are considered green substitutes because of their reusability. In addition, they will significantly improve the miscibility of biopolymers with other materials while maintaining the mechanical properties of the biopolymer in the final product. Understanding and controlling the physicochemical properties of biopolymers in ionic liquids matrices will be crucial for progress leading to the ability to fabricate robust multi-level structural 1D fiber materials. It will also help to predict the relationship between fiber conformation and protein secondary structures or carbohydrate crystallinity, thus creating potential applications for cell growth signaling, ionic conductivity, liquid diffusion and thermal conductivity, and several applications in biomedicine and environmental science. This will also enable the regeneration of biopolymer composite fiber materials with useful functionalities and customizable options critical for additive manufacturing. The specific capabilities of these fiber materials have been shown to vary based on their fabrication methods including electrospinning and post-treatments. This review serves to provide basic knowledge of these commonly utilized protein and polysaccharide biopolymers and their fiber fabrication methods from various ionic liquids, as well as the effect of post-treatments on these fiber materials and their applications in biomedical and pharmaceutical research, wound healing, environmental filters and sustainable and green chemistry research.more » « less
-
Abstract The RILEM technical committee 282-CCL: Calcined Clays as Supplementary Cementitious Materials, investigates all the aspects related to calcined clays, from clay exploration and characterization to calcination process, hydration reactions and concrete properties. This white paper focuses on the hydration mechanisms of calcined clay-blended Portland cements, covering both 1:1 and 2:1 calcined clays. The pozzolanic reaction of calcined clay is detailed, and the main reaction products are described. The differences observed depending on the clay type are also discussed, as well as the potential influence of the secondary phases present in calcined clay. The factors controlling and limiting the reaction of calcined clay are investigated, evidencing the role of porosity saturation and refinement of the microstructure. The complete characterisation of the hydration of calcined clay cements is made possible by the determination of the reaction degree of calcined clay. Several methods are compared to estimate the extent of calcined clay reaction. The influence of clinker and limestone mineralogy are also discussed. Finally, guidelines for optimising the mixture design of calcined clay blended cements are provided, with special attention to sulphate adjustment and clinker factor.