skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Into the danger zone: How the within‐host distribution of parasites controls virulence
Abstract Despite the importance of virulence in epidemiological theory, the relative contributions of host and parasite to virulence outcomes remain poorly understood. Here, we use reciprocal cross experiments to disentangle the influence of host and parasite on core virulence components—infection and pathology—and understand dramatic differences in parasite‐induced malformations in California amphibians. Surveys across 319 populations revealed that amphibians' malformation risk was 2.7× greater in low‐elevation ponds, even while controlling for trematode infection load. Factorial experiments revealed that parasites from low‐elevation sites induced higher per‐parasite pathology (reduced host survival and growth), whereas there were no effects of host source on resistance or tolerance. Parasite populations also exhibited marked differences in within‐host distribution: ~90% of low‐elevation cysts aggregated around the hind limbs, relative to <60% from high‐elevation. This offers a novel, mechanistic basis for regional variation in parasite‐induced malformations while promoting a framework for partitioning host and parasite contributions to virulence.  more » « less
Award ID(s):
1754171
PAR ID:
10482074
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Ecology Letters
Volume:
27
Issue:
1
ISSN:
1461-023X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    A key challenge surrounding ongoing climate shifts is to identify how they alter species interactions, including those between hosts and parasites. Because transmission often occurs during critical time windows, shifts in the phenology of either taxa can alter the likelihood of interaction or the resulting pathology. We quantified how phenological synchrony between vulnerable stages of an amphibian host ( Pseudacris regilla ) and infection by a pathogenic trematode ( Ribeiroia ondatrae ) determined infection prevalence, parasite load and host pathology. By tracking hosts and parasite infection throughout development between low- and high-elevation regions (San Francisco Bay Area and the Southern Cascades (Mt Lassen)), we found that when phenological synchrony was high (Bay Area), each established parasite incurred a 33% higher probability of causing severe limb malformations relative to areas with less synchrony (Mt Lassen). As a result, hosts in the Bay Area had up to a 50% higher risk of pathology even while controlling for the mean infection load. Our results indicate that host–parasite interactions and the resulting pathology were the joint product of infection load and phenological synchrony, highlighting the sensitivity of disease outcomes to forecasted shifts in climate. 
    more » « less
  2. A key challenge surrounding ongoing climate shifts is to identify how they alter species interactions, including those between hosts and parasites. Because transmission often occurs during critical time windows, shifts in the phenology of either taxa can alter the likelihood of interaction or the resulting pathology. We quantified how phenological synchrony between vulnerable stages of an amphibian host (Pseudacris regilla) and infection by a pathogenic trematode (Ribeiroia ondatrae) determined infection prevalence, parasite load and host pathology. By tracking hosts and parasite infection throughout development between low- and high-elevation regions (San Francisco Bay Area and the Southern Cascades (Mt Lassen)), we found that when phenological synchrony was high (Bay Area), each established parasite incurred a 33% higher probability of causing severe limb malformations relative to areas with less synchrony (Mt Lassen). As a result, hosts in the Bay Area had up to a 50% higher risk of pathology even while controlling for the mean infection load. Our results indicate that host–parasite interactions and the resulting pathology were the joint product of infection load and phenological synchrony, highlighting the sensitivity of disease outcomes to forecasted shifts in climate. 
    more » « less
  3. Abstract Classical theory suggests that parasites will exhibit higher fitness in sympatric relative to allopatric host populations (local adaptation). However, evidence for local adaptation in natural host–parasite systems is often equivocal, emphasizing the need for infection experiments conducted over realistic geographic scales and comparisons among species with varied life history traits. Here, we used infection experiments to test how two trematode (flatworm) species (Paralechriorchis syntomenteraandRibeiroia ondatrae) with differing dispersal abilities varied in the strength of local adaptation to their amphibian hosts. Both parasites have complex life cycles involving sequential transmission among aquatic snails, larval amphibians and vertebrate definitive hosts that control dispersal across the landscape. By experimentally pairing 26 host‐by‐parasite population infection combinations from across the western USA with analyses of host and parasite spatial genetic structure, we found that increasing geographic distance—and corresponding increases in host population genetic distance—reduced infection success forP. syntomentera, which is dispersed by snake definitive hosts. For the avian‐dispersedR. ondatrae, in contrast, the geographic distance between the parasite and host populations had no influence on infection success. Differences in local adaptation corresponded to parasite genetic structure; although populations ofP. syntomenteraexhibited ~10% mtDNA sequence divergence, those ofR. ondatraewere nearly identical (<0.5%), even across a 900 km range. Taken together, these results offer empirical evidence that high levels of dispersal can limit opportunities for parasites to adapt to local host populations. 
    more » « less
  4. Parasite-mediated selection is thought to maintain host genetic diversity for resistance. We might thus expect to find a strong positive correlation between host genetic diversity and infection prevalence across natural populations. Here, we used computer simulations to examine host–parasite coevolution in 20 simi-isolated clonal populations across a broad range of values for both parasite virulence and parasite fecundity. We found that the correlation between host genetic diversity and infection prevalence can be significantly positive for intermediate values of parasite virulence and fecundity. But the correlation can also be weak and statistically non-significant, even when parasite-mediated frequency-dependent selection is the sole force maintaining host diversity. Hence correlational analyses of field populations, while useful, might underestimate the role of parasites in maintaining host diversity. 
    more » « less
  5. Abstract Theory on the evolution of niche width argues that resource heterogeneity selects for niche breadth. For parasites, this theory predicts that parasite populations will evolve, or maintain, broader host ranges when selected in genetically diverse host populations relative to homogeneous host populations. To test this prediction, we selected the bacterial parasiteSerratia marcescensto killCaenorhabditis elegansin populations that were genetically heterogeneous (50% mix of two experimental genotypes) or homogeneous (100% of either genotype). After 20 rounds of selection, we compared the host range of selected parasites by measuring parasite fitness (i.e. virulence, the selected fitness trait) on the two focal host genotypes and on a novel host genotype. As predicted, heterogeneous host populations selected for parasites with a broader host range: these parasite populations gained or maintained virulence on all host genotypes. This result contrasted with selection in homogeneous populations of one host genotype. Here, host range contracted, with parasite populations gaining virulence on the focal host genotype and losing virulence on the novel host genotype. This pattern was not, however, repeated with selection in homogeneous populations of the second host genotype: these parasite populations did not gain virulence on the focal host genotype, nor did they lose virulence on the novel host genotype. Our results indicate that host heterogeneity can maintain broader host ranges in parasite populations. Individual host genotypes, however, vary in the degree to which they select for specialization in parasite populations. 
    more » « less