Abstract Ragweed pollen is a prevalent allergen in late summer and autumn, worsening seasonal allergic rhinitis and asthma symptoms. In the atmosphere, pollen can osmotically rupture to produce sub-pollen particles (SPP). Because of their smaller size, SPP can penetrate deeper into the respiratory tract than intact pollen grains and may trigger severe cases of asthma. Here we characterize airborne SPP forming from rupturing giant ragweed ( Ambrosia trifida ) pollen for the first time, using scanning electron microscopy and single-particle fluorescence spectroscopy. SPP ranged in diameter from 20 nm to 6.5 μm. Most SPP are capable of penetrating into the lower respiratory tract, with 82% of SPP < 1.0 μm, and are potential cloud condensation nuclei, with 50% of SPP < 0.20 μm. To support predictions of the health and environmental effects of SPP, we have developed a quantitative method to estimate the number of SPP generated per pollen grain ( $${n}_{\mathrm{f}}$$ n f ) based upon the principle of mass conservation. We estimate that one giant ragweed pollen grain generates 1400 SPP across the observed size range. The new measurements and method presented herein support more accurate predictions of SPP occurrence, concentration, and air quality impacts that can help to reduce the health burden of allergic airway diseases. Graphic abstract Rupturing ragweed pollen releasing cellular components (right), viewed by an inverted light microscope.
more »
« less
Putting the brakes on pollen wall development: A conserved negative feedback loop regulates pollen exine formation in flowering plants
- Award ID(s):
- 2240972
- PAR ID:
- 10482206
- Publisher / Repository:
- CellPress
- Date Published:
- Journal Name:
- Molecular Plant
- Volume:
- 16
- Issue:
- 9
- ISSN:
- 1674-2052
- Page Range / eLocation ID:
- 1376 to 1378
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
<bold>Summary</bold> Sexual reproduction in flowering plants depends on the fitness of the male gametophyte during fertilization. Because pollen development is highly sensitive to hot and cold temperature extremes, reliable methods to evaluate pollen viability are important for research into improving reproductive heat stress (HS) tolerance. Here, we describe an approach to rapidly evaluate pollen viability using a reactive oxygen species (ROS) probe dichlorodihydrofluorescein diacetate (i.e. H2DCFDA‐staining) coupled with flow cytometry. In using flow cytometry to analyze mature pollen harvested from Arabidopsis and tomato flowers, we discovered that pollen distributed bimodally into ‘low‐ROS’ and ‘high‐ROS’ subpopulations. Pollen germination assays following fluorescence‐activated cell sorting revealed that the high‐ROSpollen germinated with a frequency that was 35‐fold higher than the low‐ROSpollen, supporting a model in which a significant fraction of a flower's pollen remains in a low metabolic or dormant state even after hydration. The ability to use flow cytometry to quantifyROSdynamics within a large pollen population was shown by dose‐dependent alterations inDCF‐fluorescence in response to oxidative stress or antioxidant treatments. HS treatments (35°C) increasedROSlevels, which correlated with a ~60% reduction in pollen germination. These results demonstrate the potential of using flow cytometry‐based approaches to investigate metabolic changes during stress responses in pollen.more » « less
-
Abstract The ecological dynamics of co‐flowering communities are largely mediated by pollinators. However, current understanding of pollinator‐mediated interactions primarily relies on how co‐flowering plants influence attraction of shared pollinators, and much less is known about plant–plant interactions that occur via heterospecific pollen (HP) transfer. Invaded communities in particular can be highly affected by the transfer of alien pollen, but the strength, drivers and fitness consequences of these interactions at a community scale are not well understood.Here we analyse HP transfer networks in nine coastal communities in the Yucatan Mexico that vary in the relative abundance of invasive flowers to evaluate how HP donation and receipt varies between native and alien plants. We further evaluate whether HP donation and receipt are mediated by floral traits (e.g. display, flower size) or pollinator visitation rate. Finally, we evaluated whether post‐pollination success (proportion of pollen tubes produced) was affected by alien HP receipt and whether the effect varied between native and alien recipients.HP transfer networks exhibit relatively high connectance (c. 15%), suggesting high HP transfer within the studied communities. Significant network nestedness further suggests the existence of species that predominantly act as HP donors or recipients in the community. Species‐level analyses showed that natives receive 80% more HP compared to alien species, and that alien plants donate 40% more HP than natives. HP receipt and donation were mediated by different floral traits and such effects were independent of plant origin (native or alien). The proportion of alien HP received significantly affected conspecific pollen tube success in natives, but not that of alien species.Synthesis. Our results suggest that HP transfer in invaded communities is widespread, and that native and alien species play different roles within HP transfer networks, which are mediated by a different suite of floral traits. Alien species, in particular, play a central role as HP donors and are more tolerant to HP receipt than natives—a finding that points to two overlooked mechanisms facilitating alien plant invasion and success within native co‐flowering communities.more » « less
-
During angiosperm sexual reproduction, pollen tubes must penetrate through multiple cell types in the pistil to mediate successful fertilization. Although this process is highly choreographed and requires complex chemical and mechanical signaling to guide the pollen tube to its destination, aspects of our understanding of pollen tube penetration through the pistil are incomplete. Our previous work demonstrated that disruption of the Arabidopsis thaliana O-FUCOSYLTRANSFERASE1 (OFT1) gene resulted in decreased pollen tube penetration through the stigma-style interface. Here, we demonstrate that second site mutations of Arabidopsis GALACTURONOSYLTRANSFERASE 14 (GAUT14) effectively suppress the phenotype of oft1 mutants, partially restoring silique length, seed set, pollen transmission, and pollen tube penetration deficiencies in navigating the female reproductive tract. These results suggest that disruption of pectic homogalacturonan (HG) synthesis can alleviate the penetrative defects associated with the oft1 mutant and may implicate pectic HG deposition in the process of pollen tube penetration through the stigma-style interface in Arabidopsis. These results also support a model in which OFT1 function directly or indirectly modifies structural features associated with the cell wall, with the loss of oft1 leading to an imbalance in the wall composition that can be compensated for by a reduction in pectic HG deposition.more » « less
An official website of the United States government

