Abstract RNA turnover is essential in maintaining messenger RNA (mRNA) homeostasis during various developmental stages and stress responses. Co‐translational mRNA decay (CTRD), a process in which mRNAs are degraded while still associated with translating ribosomes, has recently been discovered to function in yeast and three angiosperm transcriptomes. However, it is still unclear how prevalent CTRD across the plant lineage. Moreover, the sequence features of co‐translationally decayed mRNAs have not been well‐studied. Here, utilizing a collection of publicly available degradome sequencing datasets for another seven angiosperm transcriptomes, we have confirmed that CTRD is functioning in at least 10 angiosperms and likely throughout the plant lineage. Additionally, we have identified sequence features shared by the co‐translationally decayed mRNAs in these species, implying a possible conserved triggering mechanism for this pathway. Given that degradome sequencing datasets can also be used to identify actively translating upstream open reading frames (uORFs), which are quite understudied in plants, we have identified numerous actively translating uORFs in the same 10 angiosperms. These findings reveal that actively translating uORFs are prevalent in plant transcriptomes, some of which are conserved across this lineage. We have also observed conserved sequence features in the regions flanking these uORFs' stop codons that might contribute to ribosome stalling at these sequences. Finally, we discovered that there were very few overlaps between the mRNAs harboring actively translating uORFs and those sorted into the co‐translational decay pathway in the majority of the studied angiosperms, suggesting that these two processes might be nearly mutually exclusive in those species. In total, our findings provide the identification of CTRD and actively translating uORFs across a broad collection of plants and provide novel insights into the important sequence features associated with these collections of mRNAs and regulatory elements, respectively.
more »
« less
PELOTA and HBS1 suppress co‐translational messenger RNA decay in Arabidopsis
Abstract Various messenger RNA (mRNA) decay mechanisms play major roles in controlling mRNA quality and quantity in eukaryotic organisms under different conditions. While it is known that the recently discovered co‐translational mRNA decay (CTRD), the mechanism that allows mRNAs to be degraded while still being actively translated, is prevalent in yeast, humans, and various angiosperms, the regulation of this decay mechanism is less well studied. Moreover, it is still unclear whether this decay mechanism plays any role in the regulation of specific physiological processes in eukaryotes. Here, by re‐analyzing the publicly available polysome profiling or ribosome footprinting and degradome sequencing datasets, we discovered that highly translated mRNAs tend to have lower co‐translational decay levels. Based on this finding, we then identified Pelota and Hbs1, the translation‐related ribosome rescue factors, as suppressors of co‐translational mRNA decay in Arabidopsis. Furthermore, we found that Pelota and Hbs1 null mutants have lower germination rates compared to the wild‐type plants, implying that proper regulation of co‐translational mRNA decay is essential for normal developmental processes. In total, our study provides further insights into the regulation of CTRD in Arabidopsis and demonstrates that this decay mechanism does play important roles in Arabidopsis physiological processes.
more »
« less
- Award ID(s):
- 2023310
- PAR ID:
- 10482241
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Plant Direct
- Volume:
- 7
- Issue:
- 12
- ISSN:
- 2475-4455
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Degradation of most yeast mRNAs involves decapping by Dcp1/Dcp2. DEAD-box protein Dhh1 has been implicated as an activator of decapping, in coupling codon non-optimality to enhanced degradation, and as a translational repressor, but its functions in cells are incompletely understood. RNA-Seq analyses coupled with CAGE sequencing of all capped mRNAs revealed increased abundance of hundreds of mRNAs indcp2Δ cells that appears to result directly from impaired decapping rather than elevated transcription. Interestingly, only a subset of mRNAs requires Dhh1 for targeting by Dcp2, and also generally requires the other decapping activators Pat1, Edc3, or Scd6; whereas most of the remaining transcripts utilize nonsense-mediated mRNA decay factors for Dcp2-mediated turnover. Neither inefficient translation initiation nor stalled elongation appears to be a major driver of Dhh1-enhanced mRNA degradation. Surprisingly, ribosome profiling revealed thatdcp2Δ confers widespread changes in relative translational efficiencies (TEs) that generally favor well-translated mRNAs. Because ribosome biogenesis is reduced while capped mRNA abundance is increased bydcp2Δ,we propose that an increased ratio of mRNA to ribosomes increases competition among mRNAs for limiting ribosomes to favor efficiently translated mRNAs indcp2Δ cells. Interestingly, genes involved in respiration or utilization of alternative carbon or nitrogen sources are upregulated, and both mitochondrial function and cell filamentation are elevated indcp2Δ cells, suggesting that decapping sculpts gene expression post-transcriptionally to fine-tune metabolic pathways and morphological transitions according to nutrient availability.more » « less
-
Abstract Decay of mRNAs can be triggered by ribosome slowdown at stretches of rare codons or positively charged amino acids. However, the full diversity of sequences that trigger co-translational mRNA decay is poorly understood. To comprehensively identify sequence motifs that trigger mRNA decay, we use a massively parallel reporter assay to measure the effect of all possible combinations of codon pairs on mRNA levels in S. cerevisiae. In addition to known mRNA-destabilizing sequences, we identify several dipeptide repeats whose translation reduces mRNA levels. These include combinations of positively charged and bulky residues, as well as proline-glycine and proline-aspartate dipeptide repeats. Genetic deletion of the ribosome collision sensor Hel2 rescues the mRNA effects of these motifs, suggesting that they trigger ribosome slowdown and activate the ribosome-associated quality control (RQC) pathway. Deep mutational scanning of an mRNA-destabilizing dipeptide repeat reveals a complex interplay between the charge, bulkiness, and location of amino acid residues in conferring mRNA instability. Finally, we show that the mRNA effects of codon pairs are predictive of the effects of endogenous sequences. Our work highlights the complexity of sequence motifs driving co-translational mRNA decay in eukaryotes, and presents a high throughput approach to dissect their requirements at the codon level.more » « less
-
Abstract Translation is a crucial step in gene expression and plays a vital role in regulating various aspects of plant development and environmental responses. It is a dynamic and complex program that involves interactions between mRNAs, tRNAs, and the ribosome machinery, through both cis- and trans-regulation, while integrating internal and external signals. Translational control can act in a global (transcriptome-wide) or mRNA-specific manner. Recent advances in genome-wide techniques, particularly ribosome profiling and proteomics, have led to numerous exciting discoveries in both global and mRNA-specific translation. In this review, we aim to provide a ‘primer’ that introduces readers to this fascinating yet complex cellular process and provide a big picture of how essential components connect within the network. We begin with an overview of mRNA translation, followed by a discussion of the experimental approaches and recent findings in the field, focusing on unannotated translation events and translational control through cis-regulatory elements on mRNAs and trans-acting factors, as well as signaling networks through three conserved translational regulators TOR, SnRK1, and GCN2. Finally, we briefly touch on the spatial regulation of mRNAs in translational control. Here, we focus on cytosolic mRNAs, and translation in organelles and viruses is not covered in this review.more » « less
-
Abstract A crucial step in functional genomics is identifying actively translated open reading frames (ORFs) and linking them to biological functions. The challenge lies in identifying short ORFs, as their identification is greatly influenced by data quality and depth. Here, we improved the coverage of super-resolution Ribo-seq in Arabidopsis (Arabidopsis thaliana), revealing uncharacterized translation events for nuclear, chloroplastic, and mitochondrial genes. Assisted by a transcriptome assembly, we identified 7,751 unconventional translation events, comprising 6,996 upstream ORFs (uORFs) and 209 downstream ORFs on annotated protein-coding genes, as well as 546 ORFs in presumed non-coding RNAs. Proteomics data confirmed the production of stable proteins from some of these unannotated translation events. We present evidence of active translation from primary transcripts of tasiRNAs (TAS1–4) and microRNAs (pri-MIR163, pri-MIR169), and periodic ribosome stalling supporting co-translational decay. Additionally, we developed a method for identifying extremely short uORFs, including 370 minimum uORFs (AUG-stop), and 2,921 tiny uORFs (2–10 amino acids), and 681 uORFs that overlap with each other. Remarkably, these short uORFs exhibit strong translational repression as do longer uORFs. We also systematically discovered 594 uORFs regulated by alternative splicing, suggesting widespread isoform-specific translational control. Finally, these prevalent uORFs are associated with numerous important pathways. In summary, our improved Arabidopsis translational landscape provides valuable resources to study gene expression regulation.more » « less
An official website of the United States government
