Marine phytoplankton generate half of global primary production, making them essential to ecosystem functioning and biogeochemical cycling. Though phytoplankton are phylogenetically diverse, studies rarely designate unique thermal traits to different taxa, resulting in coarse representations of phytoplankton thermal responses. Here we assessed phytoplankton functional responses to temperature using empirically derived thermal growth rates from four principal contributors to marine productivity: diatoms, dinoflagellates, cyanobacteria, and coccolithophores. Using modeled sea surface temperatures for 1950–1970 and 2080–2100, we explored potential alterations to each group’s growth rates and geographical distribution under a future climate change scenario. Contrary to the commonly applied Eppley formulation, our data suggest phytoplankton functional types may be characterized by different temperature coefficients (Q10), growth maxima thermal dependencies, and thermal ranges which would drive dissimilar responses to each degree of temperature change. These differences, when applied in response to global simulations of future temperature, result in taxon-specific projections of growth and geographic distribution, with low-latitude coccolithophores facing considerable decreases and cyanobacteria substantial increases in growth rates. These results suggest that the singular effect of changing temperature may alter phytoplankton global community structure, owing to the significant variability in thermal response between phytoplankton functional types.
Phytoplankton exhibit diverse physiological responses to temperature which influence their fitness in the environment and consequently alter their community structure. Here, we explored the sensitivity of phytoplankton community structure to thermal response parameterization in a modelled marine phytoplankton community. Using published empirical data, we evaluated the maximum thermal growth rates (
- PAR ID:
- 10482255
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Global Change Biology
- Volume:
- 30
- Issue:
- 1
- ISSN:
- 1354-1013
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Humbert, Jean-François (Ed.)
Diverse phytoplankton modulate the coupling between the ocean carbon and nutrient cycles through life-history traits such as cell size, elemental quotas, and ratios. Biodiversity is mostly considered at broad functional levels, but major phytoplankton lineages are themselves highly diverse. As an example,
Synechococcus is found in nearly all ocean regions, and we demonstrate contains extensive intraspecific variation. Here, we grew four closely relatedSynechococcus isolates in serially transferred cultures across a range of temperatures (16–25°C) to quantify for the relative role of intraspecific trait variation vs. environmental change. We report differences in cell size (p<0.01) as a function of strain and clade (p<0.01). The carbon (Q C ), nitrogen (Q N ), and phosphorus (Q P ) cell quotas all increased with cell size. Furthermore, cell size has an inverse relationship to growth rate. Within our experimental design, temperature alone had a weak physiological effect on cell quota and elemental ratios. Instead, we find systemic intraspecific variance of C:N:P, with cell size and N:P having an inverse relationship. Our results suggest a key role for intraspecific life history traits in determining elemental quotas and stoichiometry. Thus, the extensive biodiversity harbored within many lineages may modulate the impact of environmental change on ocean biogeochemical cycles. -
Abstract Phytoplankton iron contents (i.e., quotas) directly link biogeochemical cycles of iron and carbon and drive patterns of nutrient limitation, recycling, and export. Ocean biogeochemical models typically assume that iron quotas are either static or controlled by dissolved iron availability. We measured iron quotas in phytoplankton communities across nutrient gradients in the Pacific Ocean and found that quotas diverged significantly in taxon‐specific ways from laboratory‐derived predictions. Iron quotas varied 40‐fold across nutrient gradients, and nitrogen‐limitation allowed diatoms to accumulate fivefold more iron than co‐occurring flagellates even under low iron availability. Modeling indicates such “luxury” uptake is common in large regions of the low‐iron Pacific Ocean. Among diatoms, both pennate and centric genera accumulated luxury iron, but the cosmopolitan pennate genus
Pseudo‐nitzschia maintained iron quotas 10‐fold higher than co‐occurring centric diatoms, likely due to enhanced iron storage. Biogeochemical models should account for taxonomic and macronutrient controls on phytoplankton iron quotas. -
Abstract The magnitude and direction of carbon cycle feedbacks under climate warming remain uncertain due to insufficient knowledge about the temperature sensitivities of soil microbial processes. Enzymatic rates could increase at higher temperatures, but this response could change over time if soil microbes adapt to warming. We used the Arrhenius relationship, biochemical transition state theory, and thermal physiology theory to predict the responses of extracellular enzyme
V maxandK mto temperature. Based on these concepts, we hypothesized thatV maxandK mwould correlate positively with each other and show positive temperature sensitivities. For enzymes from warmer environments, we expected to find lowerV max,K m, andK mtemperature sensitivity but higherV maxtemperature sensitivity. We tested these hypotheses with isolates of the filamentous fungusNeurospora discreta collected from around the globe and with decomposing leaf litter from a warming experiment in Alaskan boreal forest. ForNeurospora extracellular enzymes,V maxQ10ranged from 1.48 to 2.25, andK mQ10ranged from 0.71 to 2.80. In agreement with theory,V maxandK mwere positively correlated for some enzymes, andV maxdeclined under experimental warming in Alaskan litter. However, the temperature sensitivities ofV maxandK mdid not vary as expected with warming. We also found no relationship between temperature sensitivity ofV maxorK mand mean annual temperature of the isolation site forNeurospora strains. DecliningV maxin the Alaskan warming treatment implies a short‐term negative feedback to climate change, but theNeurospora results suggest that climate‐driven changes in plant inputs and soil properties are important controls on enzyme kinetics in the long term. Our empirical data on enzymeV max,K m, and temperature sensitivities should be useful for parameterizing existing biogeochemical models, but they reveal a need to develop new theory on thermal adaptation mechanisms. -
Abstract Diatoms have well‐recognized roles in fixing and exporting carbon and supplying energy to marine ecosystems, but only recently have we begun to explore the diversity and importance of nano‐ and pico‐diatoms. Here, we describe a small (ca. 5
μ m) diatom from the genusChaetoceros isolated from a wintertime temperate estuary (2°C, Narragansett Bay, Rhode Island), with a unique obligate specialization for low‐light environments (< 120μ mol photons m−2 s−1). This diatom exhibits a striking interaction between irradiance and thermal responses whereby as temperatures increase, so does its susceptibility to light stress. Historical 18S rRNA amplicon data from our study site show this isolate was abundant throughout a 6‐yr period, and its presence strongly correlates with winter and early spring months when light and temperature are low. Two amplicon sequence variants matching this isolate had a circumpolar distribution in Tara Polar Ocean Circle samples, indicating its unusual light and temperature requirements are adaptations to life in a cold, dark environment. We expect this isolate's low light, psychrophilic niche to shrink as future warming‐induced stratification increases both light and temperature levels experienced by high latitude marine phytoplankton.