Abstract The goal of this paper is to prove a comparison principle for viscosity solutions of semilinear Hamilton–Jacobi equations in the space of probability measures. The method involves leveraging differentiability properties of the 2-Wasserstein distance in the doubling of variables argument, which is done by introducing a further entropy penalization that ensures that the relevant optima are achieved at positive, Lipschitz continuous densities with finite Fischer information. This allows to prove uniqueness and stability of viscosity solutions in the class of bounded Lipschitz continuous (with respect to the 1-Wasserstein distance) functions. The result does not appeal to a mean field control formulation of the equation, and, as such, applies to equations with nonconvex Hamiltonians and measure-dependent volatility. For convex Hamiltonians that derive from a potential, we prove that the value function associated with a suitable mean-field optimal control problem with nondegenerate idiosyncratic noise is indeed the unique viscosity solution. 
                        more » 
                        « less   
                    
                            
                            Mappings of generalized finite distortion and continuity
                        
                    
    
            Abstract We study continuity properties of Sobolev mappings , , that satisfy the following generalized finite distortion inequalityfor almost every . Here and are measurable functions. Note that when , we recover the class of mappings of finite distortion, which are always continuous. The continuity of arbitrary solutions, however, turns out to be an intricate question. We fully solve the continuity problem in the case of bounded distortion , where a sharp condition for continuity is that is in the Zygmund space for some . We also show that one can slightly relax the boundedness assumption on to an exponential class with , and still obtain continuous solutions when with . On the other hand, for all with , we construct a discontinuous solution with and , including an example with and . 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2154943
- PAR ID:
- 10482268
- Publisher / Repository:
- Oxford University Press (OUP)
- Date Published:
- Journal Name:
- Journal of the London Mathematical Society
- Volume:
- 109
- Issue:
- 1
- ISSN:
- 0024-6107
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract This paper aims at proving the local boundedness and continuity of solutions of the heat equation in the context of Dirichlet spaces under some rather weak additional assumptions. We consider symmetric local regular Dirichlet forms, which satisfy mild assumptions concerning (1) the existence of cut‐off functions, (2) a local ultracontractivity hypothesis, and (3) a weak off‐diagonal upper bound. In this setting, local weak solutions of the heat equation, and their time derivatives, are shown to be locally bounded; they are further locally continuous, if the semigroup admits a locally continuous density function. Applications of the results are provided including discussions on the existence of locally bounded heat kernel; structure results for ancient (local weak) solutions of the heat equation.more » « less
- 
            null (Ed.)A new network with super-approximation power is introduced. This network is built with Floor (⌊x⌋) or ReLU (max{0,x}) activation function in each neuron; hence, we call such networks Floor-ReLU networks. For any hyperparameters N∈N+ and L∈N+, we show that Floor-ReLU networks with width max{d,5N+13} and depth 64dL+3 can uniformly approximate a Hölder function f on [0,1]d with an approximation error 3λdα/2N-αL, where α∈(0,1] and λ are the Hölder order and constant, respectively. More generally for an arbitrary continuous function f on [0,1]d with a modulus of continuity ωf(·), the constructive approximation rate is ωf(dN-L)+2ωf(d)N-L. As a consequence, this new class of networks overcomes the curse of dimensionality in approximation power when the variation of ωf(r) as r→0 is moderate (e.g., ωf(r)≲rα for Hölder continuous functions), since the major term to be considered in our approximation rate is essentially d times a function of N and L independent of d within the modulus of continuity.more » « less
- 
            null (Ed.)We consider criteria for the differentiability of functions with continuous Laplacian on the Sierpiński Gasket and its higher-dimensional variants [Formula: see text], [Formula: see text], proving results that generalize those of Teplyaev [Gradients on fractals, J. Funct. Anal. 174(1) (2000) 128–154]. When [Formula: see text] is equipped with the standard Dirichlet form and measure [Formula: see text] we show there is a full [Formula: see text]-measure set on which continuity of the Laplacian implies existence of the gradient [Formula: see text], and that this set is not all of [Formula: see text]. We also show there is a class of non-uniform measures on the usual Sierpiński Gasket with the property that continuity of the Laplacian implies the gradient exists and is continuous everywhere in sharp contrast to the case with the standard measure.more » « less
- 
            Abstract In this work we introduce semi-implicit or implicit finite difference schemes for the continuity equation with a gradient flow structure. Examples of such equations include the linear Fokker–Planck equation and the Keller–Segel equations. The two proposed schemes are first-order accurate in time, explicitly solvable, and second-order and fourth-order accurate in space, which are obtained via finite difference implementation of the classical continuous finite element method. The fully discrete schemes are proved to be positivity preserving and energy dissipative: the second-order scheme can achieve so unconditionally while the fourth-order scheme only requires a mild time step and mesh size constraint. In particular, the fourth-order scheme is the first high order spatial discretization that can achieve both positivity and energy decay properties, which is suitable for long time simulation and to obtain accurate steady state solutions.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
