Chemical recycling of plastics is a promising technology to reduce carbon footprint and ease the pressure of waste treatment. Specifically, highly efficient conversion technologies for polyolefins will be the most effective solution to address the plastic waste crisis, given that polyolefins are the primary contributors to global plastic production. Significant challenges encountered by plastic waste valorization facilities include the uncertainty in the composition of the waste feedstock, process yield, and product price. These variabilities can lead to compromised performance or even render operations infeasible. To address these challenges, this work applied the robust optimization-based framework to design an integrated polyolefin chemical recycling plant. Data-driven surrogate model was built to capture the separation units behavior and reduce the computational complexity of the optimization problem. It was found that when process yield and price uncertainties were considered, wax products became more favorable, and pyrolysis became the preferred reaction technology.
more »
« less
Development of an objective measure of knowledge of plastic recycling: The outcomes of plastic recycling knowledge scale (OPRKS)
- Award ID(s):
- 2029394
- PAR ID:
- 10482452
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Journal of Environmental Psychology
- Volume:
- 91
- Issue:
- C
- ISSN:
- 0272-4944
- Page Range / eLocation ID:
- 102143
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The global production and consumption of plastics has increased at an alarming rate over the last few decades. The accumulation of pervasive and persistent waste plastic has concomitantly increased in landfills and the environment. The societal, ecological, and economic problems of plastic waste/pollution demand immediate and decisive action. In 2015, only 9% of plastic waste was successfully recycled in the United States. The major current recycling processes focus on the mechanical recycling of plastic waste; however, even this process is limited by the sorting/pretreatment of plastic waste and degradation of plastics during the process. An alternative to mechanical processes is chemical recycling of plastic waste. Efficient chemical recycling would allow for the production of feedstocks for various uses including fuels and chemical feedstocks to replace petrochemicals. This review focuses on the most recent advances for the chemical recycling of three major polymers found in plastic waste: PET, PE, and PP. Commercial processes for recycling hydrolysable polymers like polyesters or polyamides, polyolefins, or mixed waste streams are also discussed.more » « less
-
null (Ed.)The drastically increasing amount of plastic waste is causing an environmental crisis that requires innovative technologies for recycling post-consumer plastics to achieve waste valorization while meeting environmental quality goals. Biocatalytic depolymerization mediated by enzymes has emerged as an efficient and sustainable alternative for plastic treatment and recycling. A variety of plastic-degrading enzymes have been discovered from microbial sources. Meanwhile, protein engineering has been exploited to modify and optimize plastic-degrading enzymes. This review highlights the recent trends and up-to-date advances in mining novel plastic-degrading enzymes through state-of-the-art omics-based techniques and improving the enzyme catalytic efficiency and stability via various protein engineering strategies. Future research prospects and challenges are also discussed.more » « less
-
null (Ed.)The drastically increasing amount of plastic waste is causing an environmental crisis that requires innovative technologies for recycling post-consumer plastics to achieve waste valorization while meeting environmental quality goals. Biocatalytic depolymerization mediated by enzymes has emerged as an efficient and sustainable alternative for plastic treatment and recycling. A variety of plastic-degrading enzymes have been discovered from microbial sources. Meanwhile, protein engineering has been exploited to modify and optimize plastic-degrading enzymes. This review highlights the recent trends and up-to-date advances in mining novel plastic-degrading enzymes through state-of-the-art omics-based techniques and improving the enzyme catalytic efficiency and stability via various protein engineering strategies. Future research prospects and challenges are also discussed.more » « less
An official website of the United States government

