Heterogeneous bonding between metals and ceramics is of significant relevance to a wide range of applications in the fields of industry, defense, and aerospace. Metal/ceramic bonding can be used in various specific part applications such as vacuum tubes, automotive use of ceramic rotors, and rocket igniter bodies. However, the bonding of ceramic to metal has been challenging mainly due to (1) the low wettability of ceramics, on which the adhesion of molten adhesive bonders is limited and (2) the large difference between the coefficients of thermal expansion (CTE) of the two dissimilar bonded materials, which develops significant mechanical stresses at the interface and potentially leads to mechanical failures. Vapor-phase deposition is a widely used thin film processing technique in both academic research laboratories and manufacturing industries. Since vapor phase coatings do not require wettability or hydrophobicity, a uniform and strongly adherent layer is deposited over virtually any substrate, including ceramics. In this presentation, we report on the effect of vapor phase-deposited interfacial metal layers on the mechanical properties of bonding between stainless steel and Zerodur (lithium aluminosilicate-based glass ceramic). Direct-current magnetron sputtering was utilized to deposit various thin interfacial layers containing Ti, Cu, or Sn. In addition, to minimize the unfavorable stress at the bonded interface due to the large CTE difference, a low temperature allow solder, that can be chemically and mechanically activated at temperatures of approximately 200 °C, was used. The solder is made from a composite of Ti-Sn-Ce-In. A custom-built fixture and universal testing machine were used to evaluate the bonding strength in shear, which was monitored in-situ with LabView throughout the measurement. The shear strength of the bonding between stainless steel and Zerodur was systematically characterized as a function of interfacial metal and metal processing temperature during sputter depositions. Maximum shear strength of the bonding of 4.36 MPa was obtained with Cu interfacial layers, compared to 3.53 MPa from Sn and 3.42 MPa from Ti adhesion promoting layers. These bonding strengths are significantly higher than those (~0.05 MPa) of contacts without interfacial reactive thin metals. The fracture surface microstructures are presented as well. It was found that the point of failure, when Cu interfacial layers were used, was between the coated Cu film and alloy bonder. This varied from the Sn and Ti interfacial layers where the main point of failure was between the interfacial film and Zerodur interface. The findings of the effect of thin adhesion promoting metal layers and failure behaviors may be of importance to some metal/ceramic heterogeneous bonding studies that require high bonding strength and low residual stresses at the bonding interface. The authors gratefully acknowledge the financial support of the Improvement of Measurement Standards and Technology for Mechanical Metrology (Grant No. 20011028) by KRISS. 
                        more » 
                        « less   
                    
                            
                            Low-temperature metal/Zerodur heterogeneous bonding through gas-phase processed adhesion promoting interfacial layers
                        
                    
    
            The bonding of ceramic to metal has been challenging due to the dissimilar nature of the materials, particularly different surface properties and the coefficients of thermal expansion (CTE). To address the issues, gas phase-processed thin metal films were inserted at the metal/ceramic interface to modify the ceramic surface and, therefore, promote heterogeneous bonding. In addition, an alloy bonder that is mechanically and chemically activated at as low as 220 °C with reactive metal elements was utilized to bond the metal and ceramic. Stainless steel (SS)/Zerodur is selected as the metal/ceramic bonding system where Zerodur is chosen due to the known low CTE. The low-temperature process and the low CTE of Zerodur are critical to minimizing the undesirable stress evolution at the bonded interface. Sputtered Ti, Sn, and Cu (300 nm) were deposited on the Zerodur surface, and then dually activated molten alloy bonders were spread on both surfaces of the coated Zerodur and SS at 220 °C in air. The shear stress of the bonding was tested with a custom-designed fixture in a universal testing machine and was recorded through a strain indicator. The mechanical strength and the bonded surface property were compared as a function of interfacial metal thin film and analyzed through thermodynamic interfacial stability/instability calculations. A maximum shear strength of bonding of 4.36 MPa was obtained with Cu interfacial layers, while that of Sn was 3.53 MPa and that of Ti was 3.42 MPa. These bonding strengths are significantly higher than those (∼0.04 MPa) of contacts without interfacial reactive thin metals. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1931088
- PAR ID:
- 10482462
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- AIP Advances
- Volume:
- 12
- Issue:
- 10
- ISSN:
- 2158-3226
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            A severe plastic deformation process, termed accumulative extrusion bonding (AEB), is conceived to steady-state bond metals in the form of multilayered tubes. It is shown that AEB can facilitate bonding of metals in their solid-state, like the process of accumulative roll bonding (ARB). The AEB steps involve iterative extrusion, cutting, expanding, restacking, and annealing. As the process is iterated, the laminated structure layer thicknesses decrease within the tube wall, while the tube wall thickness and outer diameter remain constant. Multilayered bimetallic tubes with approximately 2 mm wall thickness and 25.25 mm outer diameter of copper-aluminum are produced at 52% radial strain per extrusion pass to contain eight layers. Furthermore, tubes of copper-copper are produced at 52% and 68% strain to contain two layers. The amount of bonding at the metal-to-metal interfaces and grain structure are measured using optical microscopy. After detailed examination, only the copper-copper bimetal deformed to 68% strain is found bonded. The yield strength of the copper-copper tube extruded at 68% improves from 83 MPa to 481 MPa; a 480% increase. Surface preparation, as described by the thin film theory, and the amount of deformation imposed per extrusion pass are identified and discussed as key contributors to enact successful metal-to-metal bonding at the interface. Unlike in ARB, bonding in AEB does not occur at ~50% strain revealing the significant role of more complex geometry of tubes relative to sheets in solid-state bonding.more » « less
- 
            Cellulose nanocrystal (CNCs) assisted carbon nanotubes (CNTs) and graphene nanoplatelets (GnP) were used to modify the interfacial region of carbon fiber (CF) and polymer matrix to strengthen the properties of carbon fiber-reinforced polymer (CFRP). Before transferring CNC-CNTs and CNC-GnPs on the CF surface by an immersion coating method, the nanomaterials were dispersed in DI water homogeneously by using probe sonication technique without additives. The results showed that the addition of CNC-CNT and CNC-GnP adjusted the interfacial chemistry of CFRP with the formation of polar groups. Furthermore, according to the single fiber fragmentation test (SFFT), the interfacial shear strength (IFSS) of CNC-GnP 6:1 and CNC-CNT 10:1 added CFRP increased to 55 MPa and 64 MPa due to modified interfacial chemistry by the incorporation of the nanomaterials. This processing technique also resulted in improvement in interlaminar shear strength (ILSS) in CFRPs from 35 MPa (neat composite) to 45 (CNC-GnP 6:1) MPa and 52 MPa (CNC-CNT 10:1).more » « less
- 
            Functionally graded materials enable the spatial tailoring of properties through controlling compositions and phases that appear as a function of position within a component. The present study investigates the ability to reduce the coefficient of thermal expansion (CTE) of an aluminum alloy, Al 2219, through additions of Ti-6Al-4V. Thermodynamic simulations were used for phase predictions, and homogenization methods were used for CTE predictions of the bulk CTE of samples spanning compositions between 100 wt% Al 2219 and 70 wt% Al 2219 (balance Ti-6Al-4V) in 10 wt% increments. The samples were fabricated using directed energy deposition (DED) additive manufacturing (AM). Al2Cu and fcc phases were experimentally identified in all samples, and aluminides were shown to form in the samples containing Ti-6Al-4V. Thermomechanical analysis was used to measure the CTE of the samples, which agreed with the predicted CTE values from homogenization methods. The present study demonstrates the ability to tailor the CTEs of samples through compositional modification, thermodynamic calculations, and homogenization methods for property predictions.more » « less
- 
            Abstract Ultrasonic additive manufacturing (UAM) is a solid state manufacturing process capable of producing near-net-shape metal parts. Recent studies have shown the promise of UAM welding of steels. However, the effect of weld parameters on the weld quality of UAM steel is unclear. A design of experiments study based on a Taguchi L16 design array was conducted to investigate the influence of parameters including baseplate temperature, amplitude, welding speed, and normal force on the interfacial temperature and shear strength of UAM welding of carbon steel 4130. Analysis of variance (ANOVA) and main effects analyses were performed to determine the effect of each parameter. A Pearson correlation test was conducted to find the relationship between interfacial temperature and shear strength. These analyses indicate that a maximum shear strength of 392.8 MPa can be achieved by using a baseplate temperature of 400°F (204.4°C), amplitude of 31.5 μm, welding speed of 40 in/min (16.93 mm/s), and normal force of 6000 N. The Pearson correlation coefficient is calculated as 0.227, which indicates no significant correlation between interfacial temperature and shear strength over the range tested.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    