Abstract The metallicity of galaxies, and its variation with galactocentric radius, provides key insights into the formation histories of galaxies and the physical processes driving their evolution. In this work, we analyze the radial metallicity gradients of star-forming galaxies in the EAGLE, Illustris, IllustrisTNG, and SIMBA cosmological simulations across broad mass (108.0M⊙≤M⋆ ≲ 1012.0M⊙) and redshift (0 ≤z≤ 8) ranges. We find that all simulations predict strong negative (i.e., radially decreasing) metallicity gradients at early cosmic times, likely due to their similar treatments of relatively smooth stellar feedback not providing sufficient mixing to quickly flatten gradients. The strongest redshift evolution occurs in galaxies with stellar masses of 1010.0–1011.0M⊙, while galaxies with stellar mass < 1010M⊙and >1011M⊙exhibit weaker redshift evolution. Our result of negative gradients at high redshift contrast with the many positive and flat gradients in the 1 < z < 4 observational literature. Atz > 6, the negative gradients observed with JWST and the Atacama Large Millimeter/submillimeter Array are flatter than those in simulations, albeit with closer agreement than at lower redshift. Overall, we suggest that these smooth stellar feedback galaxy simulations may not sufficiently mix their metal content radially, and that either stronger stellar feedback or additional subgrid turbulent metal diffusion models may be required to better reproduce observed metallicity gradients. 
                        more » 
                        « less   
                    
                            
                            LATIS: The Stellar Mass–Metallicity Relation of Star-forming Galaxies at z ∼ 2.5
                        
                    
    
            Abstract We present the stellar mass–stellar metallicity relation for 3491 star-forming galaxies at 2 ≲z≲ 3 using rest-frame far-ultraviolet spectra from the LyαTomography IMACS Survey (LATIS). We fit stellar population synthesis models from the Binary Population And Spectral Synthesis code (v2.2.1) to medium-resolution (R∼ 1000) and high signal-to-noise (>30 per 100 km s−1over the wavelength range 1221–1800 Å) composite spectra of galaxies in bins of stellar mass to determine their stellar metallicity, primarily tracing Fe/H. We find a strong correlation between stellar mass and stellar metallicity, with stellar metallicity monotonically increasing with stellar mass at low masses and flattening at high masses (M*≳ 1010.3M⊙). Additionally, we compare our stellar metallicity measurements with the gas-phase oxygen abundance of galaxies at similar redshift and estimate the average [α/Fe] ∼ 0.6. Such highα-enhancement indicates that high-redshift galaxies have not yet undergone significant iron enrichment through Type Ia supernovae. Moreover, we utilize an analytic chemical evolution model to constrain the mass loading parameter of galactic winds as a function of stellar mass. We find that as the stellar mass increases, the mass loading parameter decreases. The parameter then flattens or reaches a turning point at aroundM*∼ 1010.5M⊙. Our findings may signal the onset of black-hole-driven outflows atz∼ 2.5 for galaxies withM*≳ 1010.5M⊙. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2108014
- PAR ID:
- 10482489
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 960
- Issue:
- 1
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 73
- Size(s):
- Article No. 73
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract We characterize the multiphase circumgalactic medium (CGM) and galaxy properties atz= 6.0–6.5 in four quasar fields from the James Webb Space Telescope A SPectroscopic survey of biased halos In the Reionization Era (ASPIRE) program. We use the Very Large Telescope/X-shooter spectra of quasar J0305–3150 to identify one new metal absorber atz= 6.2713 with multiple transitions (Oi, Mgii, Feii,and Cii). They are combined with the published absorbing systems in Davies et al. at the same redshift range to form a sample of nine metal absorbers atz= 6.03–6.49. We identify eight galaxies within 1000 km s−1and 350 kpc around the absorbing gas from the ASPIRE spectroscopic data, with their redshifts secured by [Oiii] (λλ4959, 5007) doublets and Hβemission lines. Our spectral energy distribution fitting indicates that the absorbing galaxies have stellar masses ranging from 107.2to 108.8M⊙and metallicity between 0.02 and 0.4 solar. Notably, thez= 6.2713 system in the J0305–3150 field resides in a galaxy overdensity region, which contains two (tentatively) merging galaxies within 350 kpc and seven galaxies within 1 Mpc. We measure the relative abundances ofαelements to iron ([α/Fe]) and find that the CGM gas in the most overdense region exhibits a lower [α/Fe] ratio. Our modeling of the galaxy’s chemical abundance favors a top-heavy stellar initial mass function and hints that we may be witnessing the contribution of the first generation of Population III stars to the CGM at the end of the reionization epoch.more » « less
- 
            Abstract Gravitational lenses can magnify distant galaxies, allowing us to discover and characterize the stellar populations of intrinsically faint, quiescent galaxies that are otherwise extremely difficult to directly observe at high redshift from ground-based telescopes. Here, we present the spectral analysis of two lensed, quiescent galaxies atz≳ 1 discovered by theASTRO 3D Galaxy Evolution with Lensessurvey:AGEL1323 (M*∼ 1011.1M⊙,z= 1.016,μ∼ 14.6) andAGEL0014 (M*∼ 1011.5M⊙,z= 1.374,μ∼ 4.3). We measured the age, [Fe/H], and [Mg/Fe] of the two lensed galaxies using deep, rest-frame-optical spectra (S/N ≳40 Å−1) obtained on the Keck I telescope. The ages ofAGEL1323 andAGEL0014 are Gyr and Gyr, respectively, indicating that most of the stars in the galaxies were formed less than 2 Gyr after the Big Bang. Compared to nearby quiescent galaxies of similar masses, the lensed galaxies have lower [Fe/H] and [Mg/H]. Surprisingly, the two galaxies have comparable [Mg/Fe] to similar-mass galaxies at lower redshifts, despite their old ages. Using a simple analytic chemical evolution model connecting the instantaneously recycled element Mg with the mass-loading factors of outflows averaged over the entire star formation history, we found that the lensed galaxies may have experienced enhanced outflows during their star formation compared to lower-redshift galaxies, which may explain why they quenched early.more » « less
- 
            Abstract The connection between galaxies and dark matter halos is often quantified using the stellar mass–halo mass (SMHM) relation. Optical and near-infrared imaging surveys have led to a broadly consistent picture of the evolving SMHM relation based on measurements of galaxy abundances and angular correlation functions. Spectroscopic surveys atz≳ 2 can also constrain the SMHM relation via the galaxy autocorrelation function and through the cross-correlation between galaxies and Lyαabsorption measured in transverse sight lines; however, such studies are very few and have produced some unexpected or inconclusive results. We use ∼3000 spectra ofz∼ 2.5 galaxies from the LyαTomography IMACS Survey (LATIS) to measure the galaxy–galaxy and galaxy–Lyαcorrelation functions in four bins of stellar mass spanning 109.2≲M*/M⊙≲ 1010.5. Parallel analyses of the MultiDarkN-body and ASTRID hydrodynamic cosmological simulations allow us to model the correlation functions, estimate covariance matrices, and infer halo masses. We find that results of the two methods are mutually consistent and broadly accord with standard SMHM relations. This consistency demonstrates that we are able to measure and model Lyαtransmission fluctuationsδFin LATIS accurately. We also show that the galaxy–Lyαcross-correlation, a free by-product of optical spectroscopic galaxy surveys at these redshifts, can constrain halo masses with similar precision to galaxy–galaxy clustering.more » « less
- 
            Abstract Understanding the chemical enrichment of different elements is crucial to gaining a complete picture of galaxy chemical evolution. In this study, we present a new sample of 46 low-redshift, low-mass star-forming galaxies atM*∼ 108−10M⊙along with two quiescent galaxies atM*∼ 108.8M⊙observed with the Keck Cosmic Web Imager, aiming to investigate the chemical evolution of galaxies in the transition zone between Local Group satellites and massive field galaxies. We develop a novel method to simultaneously determine stellar abundances of iron and magnesium in star-forming galaxies. With the gas-phase oxygen abundance (O/H)gmeasured using the strong-line method, we are able to make the first-ever apples-to-apples comparison ofαelements in the stars and the interstellar medium. We find that the [Mg/H]*–[O/H]grelation is much tighter than the [Fe/H]*–[O/H]grelation, which can be explained by the similar production processes ofαelements. Most galaxies in our sample exhibit higher [O/H]gthan [Fe/H]*and [Mg/H]*. In addition, we construct mass–metallicity relations (MZRs) measured as three different elements (Fe*, Mg*, Og). Compared to the gas O-MZR, the stellar Fe- and Mg-MZRs show larger scatter driven by variations in specific star formation rates (sSFR), with star-forming galaxies exhibiting higher sSFR and lower stellar abundances at fixed mass. The excess of [O/H]gcompared to stellar abundances as well as the anticorrelation between sSFR and stellar abundance suggests that galaxy quenching of intermediate-mass galaxies atM*∼ 108−10M⊙is primarily driven by starvation.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
