The ocean is one of the most important sinks for anthropogenic CO2emissions. Here, I use an ocean circulation inverse model (OCIM), ocean biogeochemical models, and pCO2interpolation products to examine trends and variability in the oceanic CO2sink. The OCIM quantifies the impacts of rising atmospheric CO2, changing sea surface temperatures, and gas transfer velocities on the oceanic CO2sink. Together, these effects account for an oceanic CO2uptake of 2.2 ± 0.1 PgC yr−1from 1994 to 2007, and a net increase in the oceanic carbon inventory of 185 PgC from 1780 to 2020. However, these effects cannot account for the majority of the decadal variability shown in data‐based reconstructions of the ocean CO2sink over the past 30 years. This implies that decadal variability of the ocean CO2sink is predominantly driven by changes in ocean circulation or biology that act to redistribute both natural and anthropogenic carbon in the ocean.
This content will become publicly available on December 26, 2024
Solar‐induced chlorophyll fluorescence (SIF) shows enormous promise as a proxy for photosynthesis and as a tool for modeling variability in gross primary productivity and net biosphere exchange (NBE). In this study, we explore the skill of SIF and other vegetation indicators in predicting variability in global atmospheric CO2observations, and thus global variability in NBE. We do so using a 4‐year record of CO2observations from NASA's Orbiting Carbon Observatory 2 satellite and using a geostatistical inverse model. We find that existing SIF products closely correlate with space‐time variability in atmospheric CO2observations, particularly in the extratropics. In the extratropics, all SIF products exhibit greater skill in explaining variability in atmospheric CO2observations compared to an ensemble of process‐based CO2flux models and other vegetation indicators. With that said, other vegetation indicators, when multiplied by photosynthetically active radiation, yield similar results as SIF and may therefore be an effective structural SIF proxy at regional to global spatial scales. Furthermore, we find that using SIF as a predictor variable in the geostatistical inverse model shifts the seasonal cycle of estimated NBE and yields an earlier end to the growing season relative to other vegetation indicators. These results highlight how SIF can help constrain global‐scale variability in NBE.
more » « less- NSF-PAR ID:
- 10482511
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Biogeosciences
- Volume:
- 128
- Issue:
- 12
- ISSN:
- 2169-8953
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract The new TROPOspheric Monitoring Instrument (TROPOMI) solar‐induced chlorophyll fluorescence (SIF) data provides new opportunities to corroborate and improve global photosynthesis estimates. Here we report the spatiotemporal consistency between TROPOMI SIF and vegetation indices from the bidirectional reflectance distribution function (BRDF) adjusted (MCD43) and standard MODIS (MOD09) surface reflectance products, estimates of absorbed photosynthetically active radiation by chlorophyll (APARchl) derived from National Centers for Environmental Prediction Reanalysis‐2 (NCEP2), MODIS MCD18, and European Reanalysis (ERA5) data, and two GPP products (GPPVPMand GPPMOD17). We find (a) non‐adjusted VIs were more highly correlated with SIF at mid and high latitude than BRDF‐adjusted VIs, but were less correlated in the tropics, (b) negligible differences in the correlation between SIF and non‐adjusted NIRv and EVI, but BRDF‐adjusted NIRv had higher correlations with SIF at mid to high latitude than BRDF‐adjusted EVI but lower correlations in the tropics, (c) choice of PAR data set likely to cause substantial differences in global and regional GPP estimates and the correlation between modeled GPP and SIF, (d) SIF was more highly correlated with APARchlat high to mid latitude than EVI but more highly correlated with EVI at lower latitudes, and (e) GPPVPMis more highly correlated with SIF than GPPMOD17, except in sub‐Sahara Africa. Our results highlight that spaceborne photosynthesis would likely be improved by using a non‐linear response to PAR and that the fundamental differences between the vegetation indices and PAR data sets are likely to yield important differences in global and regional estimates of photosynthesis.
-
Abstract The boron isotope (δ11B) proxy for seawater pH is a tried and tested means to reconstruct atmospheric CO2in the geologic past, but uncertainty remains over how to treat species‐specific calibrations that link foraminiferal δ11B to pH estimates prior to 22 My. In addition, no δ11B‐based reconstructions of atmospheric CO2exist for wide swaths of the Oligocene (33–23 Ma), and large variability in CO2reconstructions during this epoch based on other proxy evidence leaves climate evolution during this period relatively unconstrained. To add to our understanding of Oligocene and early Miocene climate, we generated new atmospheric CO2estimates from new δ11B data from fossil shells of surface‐dwelling planktic foraminifera from the mid‐Oligocene to early Miocene (∼28–18 Ma). We estimate atmospheric CO2of ∼680 ppm for the mid‐Oligocene, which then evolves to fluctuate between ∼500–570 ppm during the late Oligocene and between ∼420–700 ppm in the early Miocene. These estimates tend to trend higher than Oligo‐Miocene CO2estimates from other proxies, although we observe good proxy agreement in the late Oligocene. Reconstructions of CO2fall lower than estimates from paleoclimate model simulations in the early Miocene and mid Oligocene, which indicates that more proxy and/or model refinement is needed for these periods. Our species cross‐calibrations, assessing δ11B, Mg/Ca, δ18O, and δ13C, are able to pinpoint and evaluate small differences in the geochemistry of surface‐dwelling planktic foraminifera, lending confidence to paleoceanographers applying this approach even further back in time.
-
Abstract Solar‐induced chlorophyll fluorescence (SIF) has been increasingly used as a proxy for terrestrial gross primary productivity (GPP). Previous work mainly evaluated the relationship between satellite‐observed SIF and gridded GPP products both based on coarse spatial resolutions. Finer resolution SIF (1.3 km × 2.25 km) measured from the Orbiting Carbon Observatory‐2 (OCO‐2) provides the first opportunity to examine the SIF–GPP relationship at the ecosystem scale using flux tower GPP data. However, it remains unclear how strong the relationship is for each biome and whether a robust, universal relationship exists across a variety of biomes. Here we conducted the first global analysis of the relationship between OCO‐2 SIF and tower GPP for a total of 64 flux sites across the globe encompassing eight major biomes. OCO‐2 SIF showed strong correlations with tower GPP at both midday and daily timescales, with the strongest relationship observed for daily SIF at the 757 nm (
R 2 = 0.72,p < 0.0001). Strong linear relationships between SIF and GPP were consistently found for all biomes (R 2 = 0.57–0.79,p < 0.0001) except evergreen broadleaf forests (R 2 = 0.16,p < 0.05) at the daily timescale. A higher slope was found for C4grasslands and croplands than for C3ecosystems. The generally consistent slope of the relationship among biomes suggests a nearly universal rather than biome‐specific SIF–GPP relationship, and this finding is an important distinction and simplification compared to previous results. SIF was mainly driven by absorbed photosynthetically active radiation and was also influenced by environmental stresses (temperature and water stresses) that determine photosynthetic light use efficiency. OCO‐2 SIF generally had a better performance for predicting GPP than satellite‐derived vegetation indices and a light use efficiency model. The universal SIF–GPP relationship can potentially lead to more accurate GPP estimates regionally or globally. Our findings revealed the remarkable ability of finer resolution SIF observations from OCO‐2 and other new or future missions (e.g., TROPOMI, FLEX) for estimating terrestrial photosynthesis across a wide variety of biomes and identified their potential and limitations for ecosystem functioning and carbon cycle studies. -
The enhanced vegetation productivity driven by increased concentrations of carbon dioxide (CO2) [i.e., the CO2fertilization effect (CFE)] sustains an important negative feedback on climate warming, but the temporal dynamics of CFE remain unclear. Using multiple long-term satellite- and ground-based datasets, we showed that global CFE has declined across most terrestrial regions of the globe from 1982 to 2015, correlating well with changing nutrient concentrations and availability of soil water. Current carbon cycle models also demonstrate a declining CFE trend, albeit one substantially weaker than that from the global observations. This declining trend in the forcing of terrestrial carbon sinks by increasing amounts of atmospheric CO2implies a weakening negative feedback on the climatic system and increased societal dependence on future strategies to mitigate climate warming.