skip to main content


This content will become publicly available on October 26, 2024

Title: Temporal changes in the individual size distribution modulate the long‐term trends of biomass and energy use of North American breeding bird communities
Abstract Aim

The frequency of different body sizes in an ecological community (the individual size distribution, or ISD) is a key link between the number of individual organisms present in a community and community function—total biomass or total energy use. If the ISD changes over time, the dynamics of community function may become decoupled from trends in abundance. Understanding how, and how often, the ISD modulates the relationship between abundance, biomass and energy use is of critical importance to understand biodiversity trends in the Anthropocene. Here, we conduct the first macroecological‐scale analysis of this type for avian communities.

Location

North America, north of Mexico.

Time Period

1989–2018.

Major Taxa Studied

Breeding birds.

Methods

We used species' traits to generate annual ISDs for bird communities in the North American Breeding Bird Survey. We compared the long‐term trends in total biomass and energy use to the trends generated from a null model of an unchanging ISD.

Results

Trends in biomass have been evenly split between increases and decreases, but the trends predicted by the null model were dominated by decreases. A substantial number of communities have undergone a shift in the ISD favouring larger bodied species, resulting in a less negative trend in biomass than would be expected had the ISD remained static. Trends in energy use more closely paralleled the null model.

Main Conclusions

Taking changes in the ISD into account qualitatively changes the continental‐scale picture of how biomass and energy use have changed over the past 30 years. For North American breeding birds, shifts in species composition favouring larger bodied species may have partially offset declines in standing biomass driven by losses of individuals over the past 30 years.

 
more » « less
NSF-PAR ID:
10482523
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Global Ecology and Biogeography
Volume:
33
Issue:
1
ISSN:
1466-822X
Format(s):
Medium: X Size: p. 74-84
Size(s):
["p. 74-84"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Aim

    Animal migration is often explained as the result of resource tracking in seasonally dynamic environments. Therefore, resource availability should influence both the distributions of migratory animals and their seasonal abundance. We examined the relationship between primary productivity and the spatio‐temporal distributions of migratory birds to assess the role of energy availability in avian migration.

    Location

    North America.

    Time period

    Full annual cycle, 2011–2016.

    Major taxa studied

    Nocturnally migrating landbirds.

    Methods

    We used observations of nocturnally migrating landbirds from the eBird community‐science programme to estimate weekly spatial distributions of total biomass, abundance and species richness. We related these patterns to primary productivity and seasonal productivity surplus estimated using a remotely sensed measure of vegetation greenness.

    Results

    All three avian metrics showed positive spatial associations with primary productivity, and this was more pronounced with seasonal productivity surplus. Surprisingly, biomass showed a weaker association than did abundance and richness, despite being a better indicator of energetic requirements. The strength of associations varied across seasons, being the weakest during migration. During spring migration, avian biomass increased ahead of vegetation green‐up in temperate regions, a pattern also previously described for herbivorous waterfowl. In the south‐eastern USA, spring green‐up was instead associated with a net decrease in biomass, and winter biomass greatly exceeded that of summer, highlighting the region as a winter refuge for short‐distance migrants.

    Main conclusions

    Although instantaneous energy availability is important in shaping the distribution of migratory birds, the stronger association of productivity with abundance and richness than with biomass suggests the role of additional drivers unrelated to energetic requirements that are nonetheless correlated with productivity. Given recent reports of widespread North American avifaunal declines, including many common species that winter in the south‐eastern USA, understanding how anthropogenic activities are impacting winter bird populations in the region should be a research priority.

     
    more » « less
  2. Abstract Aim

    We tested the effects of season and migratory status (residents‐versus‐seasonal migrants) on island biogeography of bird assemblages through partitioning beta diversity into richness and turnover components and community nestedness metrics. We predicted that total beta diversity, the richness component of beta diversity and community nestedness will be lower for bird assemblages in winter than in summer, and lowest of all for winter visitors. These predictions were derived from published ideas about resource availability, movement and habitat choice in birds in different seasons.

    Location

    Thousand Island Lake, China.

    Methods

    Bird species were sampled using line transects on 36 islands during five breeding and winter seasons (2009−2014). Birds were grouped into assemblages of winter residents, winter visitors and summer residents. Associations between beta diversity partitioning, island area, isolation and habitat richness were tested using partial Mantel correlations. We complemented these tests with measures of nestedness and null model approaches.

    Results

    Contrary to expectation, beta diversity, nestedness and difference of beta diversity or its components from null models were higher for winter residents than either summer resident or winter visitor assemblages. As predicted, winter visitors showed little association with habitat richness, and beta diversity was rarely different from null communities. Summer residents had the highest correlations of beta diversity components with habitat richness, but showed the lowest level of total beta diversity, a low richness component and were anti‐nested (less nested than random).

    Main conclusions

    Substantial differences were found in the biogeography of winter‐versus‐summer residents, and seasonal visitor (migratory)‐versus‐resident bird assemblages, which match expectations derived from bird biology and population ecology. Summer residents highlighted the role of habitat‐related niche differences, whereas winter residents showed area‐related selective extinction. By contrast, winter visitors appeared to be more randomly distributed.

     
    more » « less
  3. Abstract

    Overbrowsing by ungulates decimates plant populations and reduces diversity in a variety of ecosystems, but the mechanisms by which changes to plant community composition influence other trophic levels are poorly understood. In addition to removal of avian nesting habitat, browsing is hypothesized to reduce bird density and diversity through reduction of insect prey on browse‐tolerant hosts left behind by deer. In this study, we excluded birds from branches of six tree species to quantify differences in songbird prey removal across trees that vary in deer browse preference. Early in the breeding season, birds preyed on caterpillars at levels proportional to their abundance on each host. Combining these data with tree species composition data from stands exposed to experimentally controlled deer densities over 30 years ago, we tested whether overbrowsing by white‐tailed deer reduces prey biomass long after deer densities are reduced. Our analysis predicts total prey availability in the canopy of regenerating forests is fairly robust to historic exposure to high deer densities, though distribution of prey available from host species changes dramatically. This predicted compensatory effect was unexpected and is driven by high prey abundance on a single host tree species avoided by browsing deer,Prunus serotina. Thus, while we confirm that prey abundance on host trees can act as a reliable predictor for relative prey availability, this study shows that quantifying prey abundance across host trees is essential to understanding how changes in tree species composition interact with ungulate browse preference to determine prey availability for songbirds.

     
    more » « less
  4. Introduction

    Seabirds are abundant, conspicuous members of marine ecosystems worldwide. Synthesis of distribution data compiled over time is required to address regional management issues and understand ecosystem change. Major challenges when estimating seabird densities at sea arise from variability in dispersion of the birds, sampling effort over time and space, and differences in bird detection rates associated with survey vessel type.

    Methods

    Using a novel approach for modeling seabirds at sea, we applied joint dynamic species distribution models (JDSDM) with a vector-autoregressive spatiotemporal framework to survey data collected over nearly five decades and archived in the North Pacific Pelagic Seabird Database. We produced monthly gridded density predictions and abundance estimates for 8 species groups (77% of all birds observed) within Cook Inlet, Alaska. JDSDMs included habitat covariates to inform density predictions in unsampled areas and accounted for changes in observed densities due to differing survey methods and decadal-scale variation in ocean conditions.

    Results

    The best fit model provided a high level of explanatory power (86% of deviance explained). Abundance estimates were reasonably precise, and consistent with limited historical studies. Modeled densities identified seasonal variability in abundance with peak numbers of all species groups in July or August. Seabirds were largely absent from the study region in either fall (e.g., murrelets) or spring (e.g., puffins) months, or both periods (shearwaters).

    Discussion

    Our results indicated that pelagic shearwaters (Ardennaspp.) and tufted puffin (Fratercula cirrhata) have declined over the past four decades and these taxa warrant further investigation into underlying mechanisms explaining these trends. JDSDMs provide a useful tool to estimate seabird distribution and seasonal trends that will facilitate risk assessments and planning in areas affected by human activities such as oil and gas development, shipping, and offshore wind and renewable energy.

     
    more » « less
  5. Abstract

    Parameters describing the negative relationship between abundance and body size within ecological communities provide a summary of many important biological processes. While it is considered to be one of the few consistent patterns in ecology, spatiotemporal variation of this relationship across continental scale temperature gradients is unknown. Using a database of stream communities collected across North America (18–68°N latitude, −4 to 25°C mean annual air temperature) over 3 years, we constructed 160 individual size distribution (ISD) relationships (i.e. abundance size spectra). The exponent parameter describing ISD’s decreased (became steeper) with increasing mean annual temperature, with median slopes varying by ~0.2 units across the 29°C temperature gradient. In addition, total community biomass increased with increasing temperatures, contrary with theoretical predictions. Our study suggests conservation of ISD relationships in streams across broad natural environmental gradients. This supports the emerging use of size‐spectra deviations as indicators of fundamental changes to the structure and function of ecological communities.

     
    more » « less