Climate field reconstructions (CFRs) attempt to estimate spatiotemporal fields of climate variables in the past using climate proxies such as tree rings, ice cores, and corals. Data assimilation (DA) methods are a recent and promising new means of deriving CFRs that optimally fuse climate proxies with climate model output. Despite the growing application of DA-based CFRs, little is understood about how much the assimilated proxies change the statistical properties of the climate model data. To address this question, we propose a robust and computationally efficient method, based on functional data depth, to evaluate differences in the distributions of two spatiotemporal processes. We apply our test to study global and regional proxy influence in DA-based CFRs by comparing the background and analysis states, which are treated as two samples of spatiotemporal fields.We find that the analysis states are significantly altered from the climate-model-based background states due to the assimilation of proxies. Moreover, the difference between the analysis and background states increases with the number of proxies, even in regions far beyond proxy collection sites. Our approach allows us to characterize the added value of proxies, indicating where and when the analysis states are distinct from the background states. Supplementary materials for this article are available online.
more »
« less
The Historical Development of Large‐Scale Paleoclimate Field Reconstructions Over the Common Era
Abstract Climate field reconstructions (CFRs) combine modern observational data with paleoclimatic proxies to estimate climate variables over spatiotemporal grids during time periods when widespread observations of climatic conditions do not exist. The Common Era (CE) has been a period over which many seasonally‐ and annually‐resolved CFRs have been produced on regional to global scales. CFRs over the CE were first produced in the 1970s using dendroclimatic records and linear regression‐based approaches. Since that time, many new CFRs have been produced using a wide range of proxy data sets and reconstruction techniques. We assess the early history of research on CFRs for the CE, which provides context for our review of advances in CFR research over the last two decades. We review efforts to derive gridded hydroclimatic CFRs over continental regions using networks of tree‐ring proxies. We subsequently explore work to produce hemispheric‐ and global‐scale CFRs of surface temperature using multi‐proxy data sets, before specifically reviewing recently‐developed data assimilation techniques and how they have been used to produce simultaneous reconstructions of multiple climatic fields globally. We then review efforts to develop standardized and digitized databases of proxy networks for use in CFR research, before concluding with some thoughts on important next steps for CFR development.
more »
« less
- Award ID(s):
- 1743738
- PAR ID:
- 10482528
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Reviews of Geophysics
- Volume:
- 61
- Issue:
- 4
- ISSN:
- 8755-1209
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract We use theNorthern Hemisphere Tree-RingNetwork Development (NTREND) tree-ring database to examine the effects of using a small, highly-sensitive proxy network for paleotemperature data assimilation over the last millennium. We first evaluate our methods using pseudo-proxy experiments. These indicate that spatial assimilations using this network are skillful in the extratropical Northern Hemisphere and improve on previous NTREND reconstructions based on Point-by-Point regression. We also find our method is sensitive to climate model biases when the number of sites becomes small. Based on these experiments, we then assimilate the real NTREND network. To quantify model prior uncertainty, we produce 10 separate reconstructions, each assimilating a different climate model. These reconstructions are most dissimilar prior to 1100 CE, when the network becomes sparse, but show greater consistency as the network grows. Temporal variability is also underestimated before 1100 CE. Our assimilation method produces spatial uncertainty estimates and these identify treeline North America and eastern Siberia as regions that would most benefit from development of new millennial-length temperature-sensitive tree-ring records. We compare our multi-model mean reconstruction to five existing paleo-temperature products to examine the range of reconstructed responses to radiative forcing. We find substantial differences in the spatial patterns and magnitudes of reconstructed responses to volcanic eruptions and in the transition between the Medieval epoch and Little Ice Age. These extant uncertainties call for the development of a paleoclimate reconstruction intercomparison framework for systematically examining the consequences of proxy network composition and reconstruction methodology and for continued expansion of tree-ring proxy networks.more » « less
-
Abstract. Climate field reconstruction (CFR) refers to the estimation of spatiotemporal climate fields (such as surface temperature) from a collection of pointwise paleoclimate proxy datasets. Such reconstructions can provide rich information on climate dynamics and provide an out-of-sample validation of climate models. However, most CFR workflows are complex and time-consuming, as they involve (i) preprocessing of the proxy records, climate model simulations, and instrumental observations; (ii) application of one or more statistical methods; and (iii) analysis and visualization of the reconstruction results. Historically, this process has lacked transparency and accessibility, limiting reproducibility and experimentation by non-specialists. This article presents an open-source and object-oriented Python package called cfr that aims to make CFR workflows easy to understand and conduct, saving climatologists from technical details and facilitating efficient and reproducible research. cfr provides user-friendly utilities for common CFR tasks such as proxy and climate data analysis and visualization, proxy system modeling, and modularized workflows for multiple reconstruction methods, enabling methodological intercomparisons within the same framework. The package is supported with extensive documentation of the application programming interface (API) and a growing number of tutorial notebooks illustrating its usage. As an example, we present two cfr-driven reconstruction experiments using the PAGES 2k temperature database applying the last millennium reanalysis (LMR) paleoclimate data assimilation (PDA) framework and the graphical expectation–maximization (GraphEM) algorithm, respectively.more » « less
-
Abstract Paleoclimate reconstructions are now integral to climate assessments, yet the consequences of using different methodologies and proxy data require rigorous benchmarking. Pseudoproxy experiments (PPEs) provide a tractable and transparent test bed for evaluating climate reconstruction methods and their sensitivity to aspects of real-world proxy networks. Here we develop a dataset that leverages proxy system models (PSMs) for this purpose, which emulates the essential physical, chemical, biological, and geological processes that translate climate signals into proxy records, making these synthetic proxies more relevant to the real world. We apply a suite of PSMs to emulate the widely-used PAGES 2k dataset, including realistic spatiotemporal sampling and error structure. A hierarchical approach allows us to produce many variants of this base dataset, isolating the impact of sampling bias in time and space, representation error, sampling error, and other assumptions. Combining these various experiments produces a rich dataset (“pseudoPAGES2k”) for many applications. As an illustration, we show how to conduct a PPE with this dataset based on emerging climate field reconstruction techniques.more » « less
-
Abstract Reconstructing past climates remains a difficult task because pre‐instrumental observational networks are composed of geographically sparse and noisy paleoclimate proxy records that require statistical techniques to inform complete climate fields. Traditionally, instrumental or climate model statistical relationships are used to spread information from proxy measurements to other locations and to other climate variables. Here ensembles drawn from single climate models and from combinations of multiple climate models are used to reconstruct temperature variability over the last millennium in idealized experiments. We find that reconstructions derived from multi‐model ensembles produce lower error than reconstructions from single‐model ensembles when reconstructing independent model and instrumental data. Specifically, we find the largest decreases in error over regions far from proxy locations that are often associated with large uncertainties in model physics, such as mid‐ and high‐latitude ocean and sea‐ice regions. Furthermore, we find that multi‐model ensemble reconstructions outperform single‐model reconstructions that use covariance localization. We propose that multi‐model ensembles could be used to improve paleoclimate reconstructions in time periods beyond the last millennium and for climate variables other than air temperature, such as drought metrics or sea ice variables.more » « less
An official website of the United States government
