skip to main content


Title: Viscous heating as the dominant heat source inside the water snowline of V883 Ori
ABSTRACT

FU Orionis-type objects (FUors) are embedded protostars that undergo episodes of high accretion, potentially indicating a widespread but poorly understood phase in the formation of low-mass stars. Gaining a better understanding of the influence exerted by these outbursts on the evolution of the surrounding protoplanetary disc may hold significant implications for the process of planet formation and the evolution of disc chemistry. The heating due to outbursts of high accretion in FUors pushes the snowlines of key volatiles farther out in the disc, so they become easier to observe and study. Among the known FUors, V883 Ori is of particular interest. V883 Ori was the first FUor to show indirect evidence of a resolvable snowline beyond 40 au. By introducing a radial-dependent model of this source including viscous heating, we show that active heating is needed to reproduce the steep thermal profile of dust in the inner disc of V883 Ori. Our disc modelling combines the effect of stellar irradiation and the influence on the disc shape caused by the outburst of accretion. The accuracy of our model is tested by comparing synthetic Atacama Larga Millimeter Array images with continuum observations of V883 Ori, showing that the model successfully reproduces the 1.3 mm emission of V883 Ori at high spatial resolution. Our final predictions underline the importance of viscous heating as a predominant heat source for this type of object, changing the physical conditions (shape and temperature) of the disc, and influencing its evolution.

 
more » « less
NSF-PAR ID:
10482531
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
527
Issue:
4
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 9655-9667
Size(s):
["p. 9655-9667"]
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Investigating the response of icy dust aggregates to water ice sublimation is essential for understanding the formation and properties of planetesimals in protoplanetary discs. However, their fate remains unclear, as previous studies suggest that aggregates could either survive or completely fall apart to (sub)μm-sized grains. Protoplanetary discs around stars undergoing accretion outbursts represent a unique laboratory to study the ice sublimation process, as the water snowline is pushed outward to regions accessible to current observatories. In this work, we aim to understand the aggregates’ response to ice sublimation by focusing on V883 Ori, a system currently undergoing a powerful accretion outburst. We present new analysis of archival high-resolution ALMA observations of the protoplanetary disc of V883 Ori at 0.88, 1.3, 2.0, and 3.1 mm, and derive new radial spectral index profiles, which we compare with predictions from one-dimensional dust evolution simulations. In the region of V883 Ori where water ice has sublimated, we find lower spectral indices than previously obtained, indicating the presence of cm-sized particles. Coupled with our dust evolution models, we find that the only way to explain their presence is to assume that they formed before the outburst and survived the sublimation process. The resilience of dust aggregates to such intense events leads us to speculate that it may extend to other environments with more gentle heating, such as pebbles drifting through the water snowline in quiescent protoplanetary discs. In that case, it may alter the formation pathway of dry planetesimals interior to the snowline.

     
    more » « less
  2. ABSTRACT The core collapse of massive, rapidly-rotating stars are thought to be the progenitors of long-duration gamma-ray bursts (GRB) and their associated hyperenergetic supernovae (SNe). At early times after the collapse, relatively low angular momentum material from the infalling stellar envelope will circularize into an accretion disc located just outside the black hole horizon, resulting in high accretion rates necessary to power a GRB jet. Temperatures in the disc mid-plane at these small radii are sufficiently high to dissociate nuclei, while outflows from the disc can be neutron-rich and may synthesize r-process nuclei. However, at later times, and for high progenitor angular momentum, the outer layers of the stellar envelope can circularize at larger radii ≳ 107 cm, where nuclear reactions can take place in the disc mid-plane (e.g. 4He + 16O → 20Ne + γ). Here we explore the effects of nuclear burning on collapsar accretion discs and their outflows by means of hydrodynamical α-viscosity torus simulations coupled to a 19-isotope nuclear reaction network, which are designed to mimic the late infall epochs in collapsar evolution when the viscous time of the torus has become comparable to the envelope fall-back time. Our results address several key questions, such as the conditions for quiescent burning and accretion versus detonation and the generation of 56Ni in disc outflows, which we show could contribute significantly to powering GRB SNe. Being located in the slowest, innermost layers of the ejecta, the latter could provide the radioactive heating source necessary to make the spectral signatures of r-process elements visible in late-time GRB-SNe spectra. 
    more » « less
  3. ABSTRACT

    The nature and geometry of the accretion flow in the low/hard state of black hole binaries is currently controversial. While most properties are generally explained in the truncated disc/hot inner flow model, the detection of a broad residual around the iron line argues for strong relativistic effects from an untruncated disc. Since spectral fitting alone is somewhat degenerate, we combine it with the additional information in the fast X-ray variability and perform a full spectral-timing analysis for NICER and NuSTAR data on a bright low/hard state of MAXI J1820+070. We model the variability with propagating mass accretion rate fluctuations by combining two separate current insights: that the hot flow is spectrally inhomogeneous, and that there is a discontinuous jump in viscous time-scale between the hot flow and variable disc. Our model naturally gives the double-humped shape of the power spectra, and the increasing high-frequency variability with energy in the second hump. Including reflection and reprocessing from a disc truncated at a few tens of gravitational radii quantitatively reproduces the switch in the lag-frequency spectra, from hard lagging soft at low frequencies (propagation through the variable flow) to the soft lagging hard at the high frequencies (reverberation from the hard X-ray continuum illuminating the disc). The viscous time-scale of the hot flow is derived from the model, and we show how this can be used to observationally test ideas about the origin of the jet.

     
    more » « less
  4. ABSTRACT

    The upcoming Laser Interferometer Space Antenna (LISA) is expected to detect gravitational waves (GWs) from massive black hole binaries (MBHB). Finding the electromagnetic (EM) counterparts for these GW events will be crucial for understanding how and where MBHBs merge, measuring their redshifts, constraining the Hubble constant and the graviton mass, and for other novel science applications. However, due to poor GW sky localization, multiwavelength, time-dependent EM models are needed to identify the right host galaxy. We studied merging MBHBs embedded in a circumbinary disc (CBD) using high-resolution two-dimensional simulations, with a Γ-law equation of state, incorporating viscous heating, shock heating, and radiative cooling. We simulate the binary from large separation until after merger, allowing us to model the decoupling of the binary from the CBD. We compute the EM signatures and identify distinct features before, during, and after the merger. Our main result is a multiband EM signature: we find that the MBHB produces strong thermal X-ray emission until 1–2 d prior to the merger. However, as the binary decouples from the CBD, the X-ray-bright minidiscs rapidly shrink in size, become disrupted, and the accretion rate drops precipitously. As a result, the thermal X-ray luminosity drops by orders of magnitude, and the source remains X-ray dark for several days, regardless of any post-merger effects such as GW recoil or mass-loss. Looking for the abrupt spectral change where the thermal X-ray disappears is a tell-tale EM signature of LISA mergers that does not require extensive pre-merger monitoring.

     
    more » « less
  5. ABSTRACT

    Misalignments between the rotation axis of stars and gas are an indication of external processes shaping galaxies throughout their evolution. Using observations of 3068 galaxies from the SAMI Galaxy Survey, we compute global kinematic position angles for 1445 objects with reliable kinematics and identify 169 (12 per cent) galaxies which show stellar-gas misalignments. Kinematically decoupled features are more prevalent in early-type/passive galaxies compared to late-type/star-forming systems. Star formation is the main source of gas ionization in only 22 per cent of misaligned galaxies; 17 per cent are Seyfert objects, while 61 per cent show Low-Ionization Nuclear Emission-line Region features. We identify the most probable physical cause of the kinematic decoupling and find that, while accretion-driven cases are dominant, for up to 8 per cent of our sample, the misalignment may be tracing outflowing gas. When considering only misalignments driven by accretion, the acquired gas is feeding active star formation in only ∼1/4 of cases. As a population, misaligned galaxies have higher Sérsic indices and lower stellar spin and specific star formation rates than appropriately matched samples of aligned systems. These results suggest that both morphology and star formation/gas content are significantly correlated with the prevalence and timescales of misalignments. Specifically, torques on misaligned gas discs are smaller for more centrally concentrated galaxies, while the newly accreted gas feels lower viscous drag forces in more gas-poor objects. Marginal evidence of star formation not being correlated with misalignment likelihood for late-type galaxies suggests that such morphologies in the nearby Universe might be the result of preferentially aligned accretion at higher redshifts.

     
    more » « less