skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on December 28, 2024

Title: A CRISPR ‐based strategy for targeted sequencing in biodiversity science
Abstract

Many applications in molecular ecology require the ability to match specific DNA sequences from single‐ or mixed‐species samples with a diagnostic reference library. Widely used methods for DNA barcoding and metabarcoding employ PCR and amplicon sequencing to identify taxa based on target sequences, but the target‐specific enrichment capabilities of CRISPR‐Cas systems may offer advantages in some applications. We identified 54,837 CRISPR‐Cas guide RNAs that may be useful for enriching chloroplast DNA across phylogenetically diverse plant species. We tested a subset of 17 guide RNAs in vitro to enrich plant DNA strands ranging in size from diagnostic DNA barcodes of 1,428 bp to entire chloroplast genomes of 121,284 bp. We used an Oxford Nanopore sequencer to evaluate sequencing success based on both single‐ and mixed‐species samples, which yielded mean chloroplast sequence lengths of 2,530–11,367 bp, depending on the experiment. In comparison to mixed‐species experiments, single‐species experiments yielded more on‐target sequence reads and greater mean pairwise identity between contigs and the plant species' reference genomes. But nevertheless, these mixed‐species experiments yielded sufficient data to provide ≥48‐fold increase in sequence length and better estimates of relative abundance for a commercially prepared mixture of plant species compared to DNA metabarcoding based on the chloroplasttrnL‐P6 marker. Prior work developed CRISPR‐based enrichment protocols for long‐read sequencing and our experiments pioneered its use for plant DNA barcoding and chloroplast assemblies that may have advantages over workflows that require PCR and short‐read sequencing. Future work would benefit from continuing to develop in vitro and in silico methods for CRISPR‐based analyses of mixed‐species samples, especially when the appropriate reference genomes for contig assembly cannot be known a priori.

 
more » « less
NSF-PAR ID:
10482796
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Molecular Ecology Resources
ISSN:
1755-098X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Dietary DNA metabarcoding enables researchers to identify and characterize trophic interactions with a high degree of taxonomic precision. It is also sensitive to sources of bias and contamination in the field and lab. One of the earliest and most common strategies for dealing with such sensitivities has been to filter resulting sequence data to remove low-abundance sequences before conducting ecological analyses based on the presence or absence of food taxa. Although this step is now often perceived to be both necessary and sufficient for cleaning up datasets, evidence to support this perception is lacking and more attention needs to be paid to the related risk of introducing other undesirable errors. Using computer simulations, we demonstrate that common strategies to remove low-abundance sequences can erroneously eliminate true dietary sequences in ways that impact downstream dietary inferences. Using real data from well-studied wildlife populations in Yellowstone National Park, we further show how these strategies can markedly alter the composition of individual dietary profiles in ways that scale-up to obscure ecological interpretations about dietary generalism, specialism, and niche partitioning. Although the practice of removing low-abundance sequences may continue to be a useful strategy to address a subset of research questions that focus on a subset of relatively abundant food resources, its continued widespread use risks generating misleading perceptions about the structure of trophic networks. Researchers working with dietary DNA metabarcoding data—or similar data such as environmental DNA, microbiomes, or pathobiomes—should be aware of potential drawbacks and consider alternative bioinformatic, experimental, and statistical solutions. We used fecal DNA metabarcoding to characterize the diets of bison and bighorn sheep in winter and summer. Our analyses are based on 35 samples (median per species per season = 10) analyzed using the P6 loop of the chloroplast trnL(UAA) intron together with publicly available plant reference data (Illumina sequence read data are available at NCBI (BioProject: PRJNA780500)). Obicut was used to trim reads with a minimum quality threshold of 30, and primers were removed from forward and reverse reads using cutadapt. All further sequence identifications were performed using obitools; forward and reverse sequences were aligned using the illuminapairedend command using a minimum alignment score of 40, and only joined sequences retained. We used the obiuniq command to group identical sequences and tally them within samples, enabling us to quantify the relative read abundance (RRA) of each sequence. Sequences that occurred ≤2 times overall or that were ≤8 bp were discarded. Sequences were considered to be likely PCR artifacts if they were highly similar to another sequence (1 bp difference) and had a much lower abundance (0.05%) in the majority of samples in which they occurred; we discarded these sequences using the obiclean command. Overall, we characterized 357 plant sequences and a subset of 355 sequences were retained in the dataset after rarefying samples to equal sequencing depth. We then applied relative read abundance thresholds from 0% to 5% to the fecal samples. We compared differences in the inferred dietary richness within and between species based on individual samples, based on average richness across samples, and based on the total richness of each population after accounting for differences in sample size. The readme file contains an explanation of each of the variables in the dataset. Information on the methodology can be found in the associated manuscript referenced above.  
    more » « less
  2. Abstract

    Environmental DNA (eDNA) sampling—the detection of genetic material in the environment to infer species presence—has rapidly grown as a tool for sampling aquatic animal communities. A potentially powerful feature of environmental sampling is that all taxa within the habitat shed DNA and so may be detectable, creating opportunity for whole‐community assessments. However, animal DNA in the environment tends to be comparatively rare, making it necessary to enrich for genetic targets from focal taxa prior to sequencing. Current metabarcoding approaches for enrichment rely on bulk amplification using conserved primer annealing sites, which can result in skewed relative sequence abundance and failure to detect some taxa because of PCR bias. Here, we test capture enrichment via hybridization as an alternative strategy for target enrichment using a series of experiments on environmental samples and laboratory‐generated, known‐composition DNA mixtures. Capture enrichment resulted in detecting multiple species in both kinds of samples, and postcapture relative sequence abundance accurately reflected initial relative template abundance. However, further optimization is needed to permit reliable species detection at the very low‐DNA quantities typical of environmental samples (<0.1 ng DNA). We estimate that our capture protocols are comparable to, but less sensitive than, current PCR‐based eDNA analyses.

     
    more » « less
  3. Abstract Background

    Studies on haemosporidian diversity, including origin of human malaria parasites, malaria's zoonotic dynamic, and regional biodiversity patterns, have used target gene approaches. However, current methods have a trade-off between scalability and data quality. Here, a long-read Next-Generation Sequencing protocol using PacBio HiFi is presented. The data processing is supported by a pipeline that uses machine-learning for analysing the reads.

    Methods

    A set of primers was designed to target approximately 6 kb, almost the entire length of the haemosporidian mitochondrial genome. Amplicons from different samples were multiplexed in an SMRTbell® library preparation. A pipeline (HmtG-PacBio Pipeline) to process the reads is also provided; it integrates multiple sequence alignments, a machine-learning algorithm that uses modified variational autoencoders, and a clustering method to identify the mitochondrial haplotypes/species in a sample. Although 192 specimens could be studied simultaneously, a pilot experiment with 15 specimens is presented, including in silico experiments where multiple data combinations were tested.

    Results

    The primers amplified various haemosporidian parasite genomes and yielded high-quality mt genome sequences. This new protocol allowed the detection and characterization of mixed infections and co-infections in the samples. The machine-learning approach converged into reproducible haplotypes with a low error rate, averaging 0.2% per read (minimum of 0.03% and maximum of 0.46%). The minimum recommended coverage per haplotype is 30X based on the detected error rates. The pipeline facilitates inspecting the data, including a local blast against a file of provided mitochondrial sequences that the researcher can customize.

    Conclusions

    This is not a diagnostic approach but a high-throughput method to study haemosporidian sequence assemblages and perform genotyping by targeting the mitochondrial genome. Accordingly, the methodology allowed for examining specimens with multiple infections and co-infections of different haemosporidian parasites. The pipeline enables data quality assessment and comparison of the haplotypes obtained to those from previous studies. Although a single locus approach, whole mitochondrial data provide high-quality information to characterize species pools of haemosporidian parasites.

     
    more » « less
  4. Background

    Metagenomics has transformed our understanding of microbial diversity across ecosystems, with recent advances enablingde novoassembly of genomes from metagenomes. These metagenome-assembled genomes are critical to provide ecological, evolutionary, and metabolic context for all the microbes and viruses yet to be cultivated. Metagenomes can now be generated from nanogram to subnanogram amounts of DNA. However, these libraries require several rounds of PCR amplification before sequencing, and recent data suggest these typically yield smaller and more fragmented assemblies than regular metagenomes.

    Methods

    Here we evaluatede novoassembly methods of 169 PCR-amplified metagenomes, including 25 for which an unamplified counterpart is available, to optimize specific assembly approaches for PCR-amplified libraries. We first evaluated coverage bias by mapping reads from PCR-amplified metagenomes onto reference contigs obtained from unamplified metagenomes of the same samples. Then, we compared different assembly pipelines in terms of assembly size (number of bp in contigs ≥ 10 kb) and error rates to evaluate which are the best suited for PCR-amplified metagenomes.

    Results

    Read mapping analyses revealed that the depth of coverage within individual genomes is significantly more uneven in PCR-amplified datasets versus unamplified metagenomes, with regions of high depth of coverage enriched in short inserts. This enrichment scales with the number of PCR cycles performed, and is presumably due to preferential amplification of short inserts. Standard assembly pipelines are confounded by this type of coverage unevenness, so we evaluated other assembly options to mitigate these issues. We found that a pipeline combining read deduplication and an assembly algorithm originally designed to recover genomes from libraries generated after whole genome amplification (single-cell SPAdes) frequently improved assembly of contigs ≥10 kb by 10 to 100-fold for low input metagenomes.

    Conclusions

    PCR-amplified metagenomes have enabled scientists to explore communities traditionally challenging to describe, including some with extremely low biomass or from which DNA is particularly difficult to extract. Here we show that a modified assembly pipeline can lead to an improvedde novogenome assembly from PCR-amplified datasets, and enables a better genome recovery from low input metagenomes.

     
    more » « less
  5. Premise of the Study

    Polyploidy has been long recognized as an important force in plant evolution. Previous studies had suggested widespread occurrence of polyploidy and the allopolyploid origin of several species in the diverse neotropical genusLachemilla(Rosaceae). Nonetheless, this evidence has relied mostly on patterns of cytonuclear discordance, and direct evidence from nuclear allelic markers is still needed.

    Methods

    Here we usedPCRtarget enrichment in combination with high throughput sequencing to obtain multiple copies of the nuclear ribosomal (nr)DNAcistron and 45 regions of the plastid genome (cpDNA) from 219 accessions representing 48 species ofLachemillaand to explore the allopolyploid origin of species in this group.

    Key Results

    We were able to identify multiple nrDNAribotypes and establish clear evidence of allopolyploidy in 33 species ofLachemilla, showing that this condition is common and widespread in the genus. Additionally, we found evidence for three autopolyploid species. We also established multiple, independent origins of several allopolyploid species. Finally, based solely on the cpDNAphylogeny, we identified that the monotypic genusFarinopsisis the sister group ofLachemillaand allied genera within subtribe Fragariinae.

    Conclusions

    Our study demonstrates the utility of the nuclear ribosomalDNAcistron to detect allopolyploidy when concerted evolution of this region is not complete. Additionally, with a robust chloroplast phylogeny in place, the direction of hybridization events can be established, and multiple, independent origins of allopolyploid species can be identified.

     
    more » « less