skip to main content


This content will become publicly available on November 1, 2024

Title: Phase evolution and mechanical-hydroscopic properties of alkali-silica reaction gels modified by magnesium nitrate
Alkali-silica reaction (ASR)'s destructiveness is governed by the compositions and properties of ASR products, while methods of converting these hygroscopic-expansive gel-like products into innocuous phases remain unexploited. In this study, the influence of magnesium nitrate on the evolutions of phase, molecular structure, hydroscopic and mechanical properties of ASR gels with varying Mg/Si ratios from 0.1 to 1.1 was investigated. The results indicate that the primary phases of ASR products, tobermorite-type calcium silicate hydrate (C–S–H) and alkali kanemites, can be suppressed into brucite and eventually converted into magnesium-silicate-hydrate (M-S-H) in the presence of increasing Mg/Si ratios and the consequent decreasing pH. The Si–O–Si bridging bonds and Si–O symmetric stretching in the Q3 sites of ASR products can be suppressed. The phase and structure modifications resulted in a 93.5% reduction in hydroscopic swelling, a 94.7% decrease in strength, and a 152.3% drop in modulus of elasticity rendering the ASR products less destructive.  more » « less
Award ID(s):
1935799
NSF-PAR ID:
10482843
Author(s) / Creator(s):
;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Cement and Concrete Composites
Volume:
144
Issue:
C
ISSN:
0958-9465
Page Range / eLocation ID:
105283
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The ratio of silicon-29 nuclear magnetic resonance (NMR) coherence lifetimes for Q 4 and Q 3 sites under magic-angle spinning and a train of π pulses in a series of binary alkali silicate glasses is used to detect phase separation, even at small scales where the glass appears optically homogenous. This approach exploits the dependence of echo train coherence lifetimes on the residual heteronuclear dipolar coupling between Si-29 and the NMR active nuclei of neighboring network modifier cations. The shifted-echo phase incremented echo train acquisition NMR method is used to eliminate modulation of the echo train amplitudes due to J couplings across Si–O–Si linkages. A 2D Fourier and inverse Laplace transform of this dataset provides a correlation of the isotropic 29 Si chemical shift to echo train coherence lifetimes, giving a sensitive probe of phase separation as well as chemical composition and local structure of the different phases. The 29 Si Q 4 :Q 3 mean coherence lifetime ratios are 28.8, 23.8, and 5.8 in the phase-separated glasses, 0.05Li 2 O·0.95SiO 2 , 0.1Li 2 O·0.9SiO 2 and 0.05Na 2 O·0.95SiO 2 , respectively, while the ratio is reduced to 2.1, 1.6, and 1.6 in glasses not exhibiting signs of phase separation, 0.05K 2 O·0.95SiO 2 , 0.05Cs 2 O·0.95SiO 2 and 0.10Cs 2 O·0.90SiO 2 , respectively. Phase separation inhibition, through addition of alumina, is also verified in 0.07Li 2 O·0.02Al 2 O 3 ·0.91SiO 2 . 
    more » « less
  2. Abstract

    This study contributes to the quantitative understanding of kaolinite reactions with lime over two years. Unconfined Compressive Strength (UCS) increased linearly with time, doubling within one year, followed by a 14% decrease. Spectroscopic analysis of the system was performed at ten curing times (0, 7, 28, 90, 120, 180, 270, 360, 540 and 720 days) using Thermogravimetric Analysis (TGA), X-Ray Diffraction (XRD) and2Nuclear Magnetic Resonance (NMR). Both TGA and XRD showed decrease of portlandite up to 180 days; complete consumption appears to have occurred by 270 days. TGA curves indicated an increase in hydration products in the first 360 days which followed a linear trend with UCS increase. No hydration products were observable by either XRD or NMR during that timeframe and no detectable changes in the kaolinite content either. After 360 days, growth in the hydrates in TGA slowed, and XRD, NMR showed a rapid increase of stratlingite (Ca2Al2SiO7∙8H2O) up to 720 days along with a decrease in the kaolinite signal. Collectively, these results point to two phases in kaolinite dissolution: the first phase, up to about 360 days, is incongruent, characterized by preferential release of Si or Al and portlandite consumption, leading to amorphous Calcium Silicate Hydrate (CSH) or an Afm phase, calcium monosulphoaluminate hydrate (CAH) formation. The second phase involves congruent dissolution and formation of Calcium Alumino Silicate Hydrate (CASH). It is hypothesized that CSH or CAH to CASH transformation occurs in the second stage, causing a disturbance in the cementitious matrix and loss in strength.

     
    more » « less
  3. Calcium silicate hydrate (CSH) gels, the main binding phases of hydrated cement, are the most widely utilized synthetic materials. To understand the influences of composition and polymers on the reaction kinetics and phase formation, CSH gels with varying Ca/Si ratios and amounts of poly (acrylamide-co-acrylic acid) partial sodium salt (PAAm-co-PAA) were synthesized via a direct method. The CSH gels were characterized through isothermal calorimetry, thermogravimetric analysis (TGA), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and Raman spectroscopy at different ages. By increasing the Ca/Si ratio from 0.8 to 1.0, the formation of CSH was enhanced with a 5.4% lower activation energy, whereas the incorporation of PAAm-co-PAA increased the temperature sensitivity of the reactions with an 83.3% higher activation energy. In the presence of PAAm-co-PAA, the reaction rate was retarded at an early age and the negative impact faded over time. The results of an XRD analysis indicated the formation of tobermorite as the main phase of the CSH gels, while the addition of PAAm-co-PAA resulted in a postponed calcium hydroxide consumption and CSH formation, which was confirmed by the decreased FTIR intensity of the C=O bond, Si–O stretching and Si–O bonds. The increased Raman vibrations of Si–O–Si bending Q2, Ca–O bonds, O–Si–O and asymmetric bending vibrations of SiO4 tetrahedra in the presence of PAAm-co-PAA indicate the intercalation of the polymeric phase and internal deformation of CSH gels. 
    more » « less
  4. Abstract

    A new high‐pressure silicate, (Mg,Fe,Si)2(Si,□)O4with a tetragonal spinelloid structure, was discovered within shock melt veins in the Tenham and Suizhou meteorites, two highly shocked L6 ordinary chondrites. Relative to ringwoodite, this phase exhibits an inversion of Si coupled with intrinsic vacancies and a consequent reduction of symmetry. Most notably, the spinelloid makes up about 30–40 vol% of the matrix of shock veins with the remainder composed of a vitrified (Mg,Fe)SiO3phase (in Tenham) or (Mg,Fe)SiO3‐rich clinopyroxene (in Suizhou); these phase assemblages constitute the bulk of the matrix in the shock veins. Previous assessments of the melt matrices concluded that majorite and akimotoite were the major phases. Our contrasting result requires revision of inferred conditions during shock melt cooling of the Tenham and Suizhou meteorites, revealing in particular a much higher quench rate (at least 5 × 103 K s−1) for veins of 100–500 μm diameter, thus overriding formation of the stable phase assemblage majoritic garnet plus periclase.

     
    more » « less
  5. Abstract

    The relative composition of Earth's core and mantle were set during core formation. By determining how elements partition between metal and silicate at high pressures and temperatures, measurements of the mantle composition and geophysical observations of the core can be used to understand the mechanisms by which Earth formed. Here we present the results of metal‐silicate partitioning experiments for a range of nominally lithophile elements (Al, Ca, K, Mg, O, Si, Th, and U) and S to 85 GPa and up to 5400 K. With our results and a compilation of literature data, we developed a parameterization for partitioning that accounts for compositional dependencies in both the metal and silicate phases. Using this parameterization in a range of planetary growth models, we find that, in general, lithophile element partitioning into the metallic phase is enhanced at high temperatures. The relative abundances of FeO, SiO2, and MgO in the mantle vary significantly between planetary growth models, and the mantle abundances of these elements can be used to provide important constraints on Earth's accretion. To match Earth's core mass and mantle composition, Earth's building blocks must have been enriched in Fe and depleted in Si compared with CI chondrites. Finally, too little Mg, Si, and O are partitioned into the core for precipitation of oxides to be a major source of energy for the geodynamo. In contrast, several ppb of U can be partitioned into the core at high temperatures, and this energy source must be accounted for in thermal evolution models.

     
    more » « less