skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Spectrum of large N glueballs: holography vs lattice
A<sc>bstract</sc> Recently there has been a notable progress in the study of glueball states in lattice gauge theories, in particular extrapolating their spectrum to the limit of large number of colorsN. In this note we compare the largeNlattice results with the holographic predictions, focusing on the Klebanov-Strassler model, which describes a gauge theory with$$ \mathcal{N} $$ N = 1 supersymmetry. We note that glueball spectrum demonstrates approximate universality across a range of gauge theory models. Because of this universality the holographic models can give reliable predictions for the spectrum of pure SU(N) Yang-Mills theories with and without supersymmetry. This is especially important for the supersymmetric theories, for which no firm lattice predictions exist yet, and the holographic models remain the most tractable approach. For SU(N) theories with largeNthe lattice non-supersymmetric and holographic supersymmetric predictions for the mass ratios of the lightest states in various sectors agree up to 5–8%, supporting the proposed universality. In particular, both lattice and holography give predictions for the 2++and 1−−mass ratio, consistent with the known constraints on the pomeron and odderon Regge trajectories.  more » « less
Award ID(s):
2013812
PAR ID:
10483045
Author(s) / Creator(s):
;
Publisher / Repository:
Springer (Journal of High Energy Physics)
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2022
Issue:
11
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A<sc>bstract</sc> We analyze correlation functions of SU(k) × SU(2)Fflavor currents in a family of three-dimensional$$ \mathcal{N} $$ N = 4 superconformal field theories, combining analytic bootstrap methods with input from supersymmetric localization. Via holographic duality, we extract gluon and graviton scattering amplitudes of M-theory on AdS4×S7/ℤkwhich contains a ℂ2/ℤkorbifold singularity. From these results, we derive aspects of the effective description of M-theory on the orbifold singularity beyond its leading low energy limit. We also determine a threshold correction to the holographic correlator from the combined contribution of two-loop gluon and tree-level bulk graviton exchange. 
    more » « less
  2. A<sc>bstract</sc> In the standard$$ \mathcal{N} $$ N = (4, 4) AdS3/CFT2with symN(T4), as well as the$$ \mathcal{N} $$ N = (2, 2) Datta-Eberhardt-Gaberdiel variant with symN(T4/ℤ2), supersymmetric index techniques have not been applied so far to the CFT states with target-space momentum or winding. We clarify that the difficulty lies in a central extension of the SUSY algebra in the momentum and winding sectors, analogous to the central extension on the Coulomb branch of 4d$$ \mathcal{N} $$ N = 2 gauge theories. We define modified helicity-trace indices tailored to the momentum and winding sectors, and use them for microstate counting of the corresponding bulk black holes. In the$$ \mathcal{N} $$ N = (4, 4) case we reproduce the microstate matching of Larsen and Martinec. In the$$ \mathcal{N} $$ N = (2, 2) case we resolve a previous mismatch with the Bekenstein-Hawking formula encountered in the topologically trivial sector by going to certain winding sectors. 
    more » « less
  3. A<sc>bstract</sc> The planar integrability of$$ \mathcal{N} $$ N = 4 super-Yang-Mills (SYM) is the cornerstone for numerous exact observables. We show that the large charge sector of the SU(2)$$ \mathcal{N} $$ N = 4 SYM provides another interesting solvable corner which exhibits striking similarities despite being far from the planar limit. We study non-BPS operators obtained by small deformations of half-BPS operators withR-chargeJin the limitJ→ ∞ with$$ {\lambda}_J\equiv {g}_{\textrm{YM}}^2J/2 $$ λ J g YM 2 J / 2 fixed. The dynamics in thislarge charge ’t Hooft limitis constrained by a centrally-extended$$ \mathfrak{psu} $$ psu (2|2)2symmetry that played a crucial role for the planar integrability. To the leading order in 1/J, the spectrum is fully fixed by this symmetry, manifesting the magnon dispersion relation familiar from the planar limit, while it is constrained up to a few constants at the next order. We also determine the structure constant of two large charge operators and the Konishi operator, revealing a rich structure interpolating between the perturbative series at weak coupling and the worldline instantons at strong coupling. In addition we compute heavy-heavy-light-light (HHLL) four-point functions of half-BPS operators in terms of resummed conformal integrals and recast them into an integral form reminiscent of the hexagon formalism in the planar limit. For general SU(N) gauge groups, we study integrated HHLL correlators by supersymmetric localization and identify a dual matrix model of sizeJ/2 that reproduces our large charge result atN= 2. Finally we discuss a relation to the physics on the Coulomb branch and explain how the dilaton Ward identity emerges from a limit of the conformal block expansion. We comment on generalizations including the large spin ’t Hooft limit, the combined largeN-largeJlimits, and applications to general$$ \mathcal{N} $$ N = 2 superconformal field theories. 
    more » « less
  4. A<sc>bstract</sc> A search for supersymmetry is presented in events with a single charged lepton, electron or muon, and multiple hadronic jets. The data correspond to an integrated luminosity of 138 fb−1of proton-proton collisions at a center-of-mass energy of 13 TeV, recorded by the CMS experiment at the CERN LHC. The search targets gluino pair production, where the gluinos decay into final states with the lightest supersymmetric particle (LSP) and either a top quark-antiquark ($$ \textrm{t}\overline{\textrm{t}} $$ t t ¯ ) pair, or a light-flavor quark-antiquark ($$ \textrm{q}\overline{\textrm{q}} $$ q q ¯ ) pair and a virtual or on-shell W boson. The main backgrounds,$$ \textrm{t}\overline{\textrm{t}} $$ t t ¯ pair and W+jets production, are suppressed by requirements on the azimuthal angle between the momenta of the lepton and of its reconstructed parent W boson candidate, and by top quark and W boson identification based on a machine-learning technique. The number of observed events is consistent with the expectations from standard model processes. Limits are evaluated on supersymmetric particle masses in the context of two simplified models of gluino pair production. Exclusions for gluino masses reach up to 2120 (2050) GeV at 95% confidence level for a model with gluino decay to a$$ \textrm{t}\overline{\textrm{t}} $$ t t ¯ pair (a$$ \textrm{q}\overline{\textrm{q}} $$ q q ¯ pair and a W boson) and the LSP. For the same models, limits on the mass of the LSP reach up to 1250 (1070) GeV. 
    more » « less
  5. A<sc>bstract</sc> In this note we construct large ensembles of supersymmetry breaking solutions arising in the context of flux compactifications of type IIB string theory. This class of solutions was previously proposed in [1] for which we provide the first explicit examples in Calabi-Yau orientifold compactifications with discrete fluxes below their respective tadpole constraint. As a proof of concept, we study the degree 18 hypersurface in weighted projective space$$ \mathbbm{CP} $$ CP 1,1,1,6,9. Furthermore, we look at 10 additional orientifolds withh1,2= 2,3. We find several flux vacua with hierarchical suppression of the vacuum energy with respect to the gravitino mass. These solutions provide a crucial stepping stone for the construction of explicit de Sitter vacua in string theory. Lastly, we also report the difference in the distribution ofW0between supersymmetric and non-supersymmetric minima. 
    more » « less