Innovative tools are essential for advancing malaria control and depend on an understanding of molecular mechanisms governing transmission of malaria parasites by Anopheles mosquitoes. CRISPR/Cas9-based gene disruption is a powerful method to uncover underlying biology of vector-pathogen interactions and can itself form the basis of mosquito control strategies. However, embryo injection methods used to genetically manipulate mosquitoes (especially Anopheles ) are difficult and inefficient, particularly for non-specialist laboratories. Here, we adapted the ReMOT Control ( Re ceptor- m ediated O vary T ransduction of C argo) technique to deliver Cas9 ribonucleoprotein complex to adult mosquito ovaries, generating targeted and heritable mutations in the malaria vector Anopheles stephensi without injecting embryos. In Anopheles , ReMOT Control gene editing was as efficient as standard embryo injections. The application of ReMOT Control to Anopheles opens the power of CRISPR/Cas9 methods to malaria laboratories that lack the equipment or expertise to perform embryo injections and establishes the flexibility of ReMOT Control for diverse mosquito species.
more »
« less
The Development and Expansion of in vivo Germline Editing Technologies in Arthropods: Receptor-Mediated Ovary Transduction of Cargo (ReMOT Control) and Beyond
Synopsis In the past 20 years, sequencing technologies have led to easy access to genomic data from nonmodel organisms in all biological realms. Insect genetic manipulation, however, continues to be a challenge due to various factors, including technical and cost-related issues. Traditional techniques such as microinjection of gene-editing vectors into early stage embryos have been used for arthropod transgenesis and the discovery of Clustered regularly interspaced short palindromic repeats and CRISPR-associated protein (CRISPR–Cas) technologies allowed for targeted mutagenesis and the creation of knockouts or knock-ins in arthropods. Receptor-Mediated Ovary Transduction of Cargo (ReMOT Control) acts as an alternative to embryonic microinjections, which require expensive equipment and extensive hands-on training. ReMOT Control’s main advantage is its ease of use coupled with the ability to hypothetically target any vitellogenic species, as injections are administered to the egg-laying adult rather than embryos. After its initial application in the mosquito Aedes aegypti, ReMOT Control has successfully produced mutants not only for mosquitoes but for multiple arthropod species from diverse orders, such as ticks, mites, wasps, beetles, and true bugs, and is being extended to crustaceans, demonstrating the versatility of the technique. In this review, we discuss the current state of ReMOT Control from its proof-of-concept to the advances and challenges in the application across species after 5 years since its development, including novel extensions of the technique such as direct parental (DIPA)-CRISPR.
more »
« less
- Award ID(s):
- 1645331
- PAR ID:
- 10483058
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Integrative And Comparative Biology
- Volume:
- 63
- Issue:
- 6
- ISSN:
- 1540-7063
- Format(s):
- Medium: X Size: p. 1550-1563
- Size(s):
- p. 1550-1563
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract CRISPR/Cas9 gene editing is a powerful technology to study the genetics of rising model organisms, such as the jewel waspNasonia vitripennis. However, current methods involving embryonic microinjection of CRISPR reagents are challenging. Delivery of Cas9 ribonucleoprotein into female ovaries is an alternative that has only been explored in a small handful of insects, such as mosquitoes, whiteflies and beetles. Here, we developed a simple protocol for germline gene editing by injecting Cas9 ribonucleoprotein in adultN. vitripennisfemales using either ReMOT control (Receptor‐Mediated Ovary Transduction of Cargo) or BAPC (Branched Amphiphilic Peptide Capsules) as ovary delivery methods. For ReMOT Control we used theDrosophila melanogaster‐derived peptide ‘P2C’ fused to EGFP to visualize the ovary delivery, and fused to Cas9 protein for gene editing of thecinnabargene using saponin as an endosomal escape reagent. For BAPC we optimized the concentrations of protein, sgRNA and the transfection reagent. We demonstrate delivery of protein cargo such as EGFP and Cas9 into developing oocytes via P2C peptide and BAPC. Additionally, somatic and germline gene editing were demonstrated. This approach will greatly facilitate CRISPR‐applied genetic manipulation in this and other rising model organisms.more » « less
-
Slotman, Michel (Ed.)Abstract The wide distribution of Culex (Cx.) pipiens complex mosquitoes makes it difficult to prevent the transmission of mosquito-borne diseases in humans. Gene editing using CRISPR/Cas9 is an effective technique with the potential to solve the growing problem of mosquito-borne diseases. This study uses the ReMOT Control technique in Culex pipiens pallens (L.) to produce genetically modified mosquitoes. A microinjection system was established by injecting 60 adult female mosquitoes—14 µl injection mixture was required, and no precipitation occurred with ≤1 µl of endosomal release reagents (chloroquine or saponin). The efficiency of delivery of the P2C-enhanced green fluorescent protein-Cas9 (P2C-EGFP-Cas9) ribonucleoprotein complex into the ovary was 100% when injected at 24 h post-bloodmeal (the peak of vitellogenesis). Using this method for KMO knockout, we found that gene editing in the ovary could also occur when P2C-Cas9 RNP complex was injected into the hemolymph of adult Cx. pipiens pallens by ReMOT Control. In the chloroquine group, of the 2,251 G0 progeny screened, 9 individuals showed with white and mosaic eye phenotypes. In the saponin group, of the 2,462 G0 progeny screened, 8 mutant individuals were observed. Sequencing results showed 13 bp deletions, further confirming the fact that gene editing occurred. In conclusion, the successful application of ReMOT Control in Cx. pipiens pallens not only provides the basic parameters (injection parameters and injection time) for this method but also facilitates the study of mosquito biology and control.more » « less
-
Abstract BackgroundSea urchin embryos have been used for more than a century in the study of fertilization and early development. However, several of the species used, such asStrongylocentrotus purpuratus, have long generation times making them suboptimal for transgenerational studies. ResultsHere, we present an overview of the development of a rapidly developing echinoderm species,Lytechinus pictus, from fertilization through sexual maturation. When grown at room temperature (20°C) embryos complete the first cell cycle in 90 minutes, followed by subsequent cleavages every 45 minutes, leading to hatching at 9 hours postfertilization (hpf). The swimming embryos gastrulate from 12 to 36 hpf and produce the cells which subsequently give rise to the larval skeleton and immunocytes. Larvae begin to feed at 2 days and metamorphose by 3 weeks. Juveniles reach sexual maturity at 4 to 6 months of age, depending on individual growth rate. ConclusionsThis staging scheme lays a foundation for future studies inL. pictus, which share many of the attractive features of other urchins but have the key advantage of rapid development to sexual maturation. This is significant for multigenerational and genetic studies newly enabled by CRISPR‐CAS mediated gene editing.more » « less
-
null (Ed.)ABSTRACT The ABC transporter ABCB1 plays an important role in the disposition of xenobiotics. Embryos of most species express high levels of this transporter in early development as a protective mechanism, but its native substrates are not known. Here, we used larvae of the sea urchin Strongylocentrotus purpuratus to characterize the early life expression and role of Sp-ABCB1a, a homolog of ABCB1. The results indicate that while Sp-ABCB1a is initially expressed ubiquitously, it becomes enriched in the developing gut. Using optimized CRISPR/Cas9 gene editing methods to achieve high editing efficiency in the F0 generation, we generated ABCB1a crispant embryos with significantly reduced transporter efflux activity. When infected with the opportunistic pathogen Vibrio diazotrophicus, Sp-ABCB1a crispant larvae demonstrated significantly stronger gut inflammation, immunocyte migration and cytokine Sp-IL-17 induction, as compared with infected control larvae. The results suggest an ancestral function of ABCB1 in host–microbial interactions, with implications for the survival of invertebrate larvae in the marine microbial environment.more » « less
An official website of the United States government
