skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Picomolar-Level Sensing of Cannabidiol by Metal Nanoparticles Functionalized with Chemically Induced Dimerization Binders
Simple and fast detection of small molecules is critical for health and environmental monitoring. Methods for chemical detection often use mass spectrometers or enzymes; the former relies on expensive equipment, and the latter is limited to those that can act as enzyme substrates. Affinity reagents like antibodies can target a variety of small-molecule analytes, but the detection requires the successful design of chemically conjugated targets or analogs for competitive binding assays. Here, we developed a generalizable method for the highly sensitive and specific in-solution detection of small molecules, using cannabidiol (CBD) as an example. Our sensing platform uses gold nanoparticles (AuNPs) functionalized with a pair of chemically induced dimerization (CID) nanobody binders (nanobinders), where CID triggers AuNP aggregation and sedimentation in the presence of CBD. Despite moderate binding affinities of the two nanobinders to CBD (equilibrium dissociation constants KD of ∼6 and ∼56 μM), a scheme consisting of CBD−AuNP preanalytical incubation, centrifugation, and electronic detection (ICED) was devised to demonstrate a high sensitivity (limit of detection of ∼100 picomolar) in urine and saliva, a relatively short sensing time (∼2 h), a large dynamic range (5 logs), and a sufficiently high specificity to differentiate CBD from its analog, tetrahydrocannabinol. The high sensing performance was achieved with the multivalency of AuNP sensing, the ICED scheme that increases analyte concentrations in a small assay volume, and a portable electronic detector. This sensing system is readily applicable for wide molecular diagnostic applications.  more » « less
Award ID(s):
1847324 2020464
PAR ID:
10483169
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
ACS
Date Published:
Journal Name:
ACS Sensors
Volume:
8
Issue:
12
ISSN:
2379-3694
Page Range / eLocation ID:
4696 to 4706
Subject(s) / Keyword(s):
small-molecule sensing, cannabidiol, chemically induced dimerization, metal nanoparticles, rapid electronic detection
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Aptamers are short oligonucleotides isolated in vitro from randomized libraries that can bind to specific molecules with high affinity, and offer a number of advantages relative to antibodies as biorecognition elements in biosensors. However, it remains difficult and labor‐intensive to develop aptamer‐based sensors for small‐molecule detection. Here, we review the challenges and advances in the isolation and characterization of small‐molecule‐binding DNA aptamers and their use in sensors. First, we discuss in vitro methodologies for the isolation of aptamers, and provide guidance on selecting the appropriate strategy for generating aptamers with optimal binding properties for a given application. We next examine techniques for characterizing aptamer–target binding and structure. Afterwards, we discuss various small‐molecule sensing platforms based on original or engineered aptamers, and their detection applications. Finally, we conclude with a general workflow to develop aptamer‐based small‐molecule sensors for real‐world applications. 
    more » « less
  2. Smart home electronic devices invisibly collect, process, and exchange information with each other and with remote services, often without a home occupants' knowledge or consent. These devices may be mobile or fixed and may have wireless or wired network connections. Detecting and identifying all devices present in a home is a necessary first step to control the flow of data, but there exists no universal mechanism to detect and identify all electronic devices in a space. In this paper we present ICED (Identification and Classification of Electronic Devices), a system that can (i) identify devices from a known set of devices, and (ii) detect the presence of previously unseen devices. ICED, based on harmonic radar technology, collects measurements at the first harmonic of the radar's transmit frequency. We find that the harmonic response contains enough information to infer the type of device. It works when the device has no wireless network interface, is powered off, or attempts to evade detection. We evaluate performance on a collection of 17 devices and find that by transmitting a range of frequencies we correctly identify known devices with 97.6% accuracy and identify previously unseen devices as ‘unknown’ with 69.0% balanced accuracy. 
    more » « less
  3. null (Ed.)
    Gold nanoparticles (AuNPs) are now being used in such areas as diagnostics, drug delivery, and biological sensing. In these applications, AuNPs are frequently exposed to biological fluids. These fluids contain many different proteins, any of which may interfere with the intended function of the nanoparticle. In this work, we examine the thermodynamic consequences of proteinnanoparticle binding using a combined spectroscopic and calorimetric approach. We monitored binding using UV-Vis spectroscopy, differential scanning calorimetry (DSC), and isothermal titration calorimetry (ITC). Six proteins were studied based on their differing chemical properties, and both 15 nm and 30 nm citrate-coated AuNPs were investigated. We interpreted the UV-Vis data using two different models: the commonly-used Langmuir isotherm model and a more complex mass transport model. Both models can be used to determine Kd values for the 30 nm AuNP data; however, the mass transport model is more appropriate for 15 nm AuNPs. This is because, when fitting the Langmuir model, it is commonly assumed that most proteins are not surface-associated, and this assumption fails for 15 nm AuNPs. The DSC thermograms show two transitions for a globular protein adsorbed to a 15 nm AuNP: one high-temperature transition that is similar to global protein unfolding (68 C), and one low-temperature transition that may correspond to unfolding at the surface (56 C). Conversely, ITC experiments show no net heat of adsorption for GB3, even at high protein/AuNP concentrations. Together, the spectroscopic and calorimetric data suggest a complex, multi-step process for protein-nanoparticle adsorption. Moreover, for the proteins studied, both AuNP curvature and protein chemistry contribute to protein adsorption, with proteins generally binding more weakly to the larger nanoparticles. In the future, this work may lead to principles for improving the design of AuNPbased therapeutics and sensors. 
    more » « less
  4. Abstract Small molecules play important roles in a variety of biological processes such as metabolism, cell signaling and enzyme regulation, and can serve as valuable biomarkers for human diseases. Moreover, they are essential to drug discovery and development, and are important targets for environmental monitoring and food safety. Due to the size incompatibility, small molecule transport is difficult to be monitored with a nanopore. A popular strategy for nanopore detection of small molecules is to introduce a molecular probe as a ligand (or recognition element) and rely on their effect on the ligand transport. One limitation for this sensing strategy is that the probe molecule needs to have a slightly smaller size than the nanopore constriction or can be easily unfolded or unzipped through the pore. Herein, by taking advantage of replacement and complexation chemical interactions, a generic approach is reported for detection of small molecules by using large biomolecules with well‐defined stable 3D structures such as aptamers as recognition elements. Given the versatile use of aptamers as capture agents for a wide variety of species, the developed nanopore sensing strategy should find applications in many fields. 
    more » « less
  5. We investigate the current transport characteristics in the electrolyte-dielectric-electrolyte structure commonly used in the in-situ controlled breakdown (CBD) fabrication of solid-state nanopores. It is found that the stochastic breakdown process could lead to fidelity issues of false positives (an incorrect indication of a true nanopore formation) and false negatives (inability to detect initial nanopore formation). Robust and deterministic detection of initial physical breakdown to alleviate false positives and false negatives is critical for precise nanopore size control. To this end, we report a high fidelity moving Z-Score method based CBD fabrication of solid-state nanopore. We demonstrate 100% success rate of realizing the initial nanopore conductance of 3±1 nS (corresponds to the size of 1.7±0.6 nm) regardless of the dielectric membrane characteristics. Our study also elucidates the Joule heating is the dominant mechanism for electric field-based nanopore enlargement. Single DNA molecule sensing using nanopores fabricated by this method was successfully demonstrated. We anticipate the moving Z-Score based CBD method could enable broader access to the solid state nanopore-based single molecule analysis. 
    more » « less