skip to main content

This content will become publicly available on December 1, 2024

Title: Metagenomic analysis examines oral microbiome changes and interplay with immune response following prenatal total oral rehabilitation
Abstract Background

Suboptimal maternal oral health during pregnancy is potentially associated with adverse birth outcomes and increased dental caries risks in children. This study aimed to assess the oral microbiome and immune response following an innovative clinical regimen, Prenatal Total Oral Rehabilitation (PTOR), that fully restores women’s oral health to a “disease-free status” before delivery.


This prospective cohort study assessed 15 pregnant women at baseline and 3 follow-up visits (1 week, 2 weeks, and 2 months) after receiving PTOR. The salivary and supragingival plaque microbiomes were analyzed using metagenomic sequencing. Multiplexed Luminex cytokine assays were performed to examine immune response following PTOR. The association between salivary immune markers and oral microbiome was further examined.


PTOR was associated with a reduction of periodontal pathogens in plaque, for instance, a lower relative abundance ofTannerella forsythiaandTreponema denticolaat 2 weeks compared to the baseline (p < 0.05). The alpha diversity of plaque microbial community was significantly reduced at the 1-week follow-up (p < 0.05). Furthermore, we observed significant changes in theActinomyces defective-associated carbohydrate degradation pathway andStreptococcus Gordonii-associated fatty acid biosynthesis pathway. Two immune markers related to adverse birth outcomes significantly differed between baseline and follow-up. ITAC, negatively correlated with preeclampsia severity, significantly increased at 1-week follow-up; MCP-1, positively correlated with gestational age, was elevated at 1-week follow-up. Association modeling between immune markers and microbiome further revealed specific oral microorganisms that are potentially correlated with the host immune response.


PTOR is associated with alteration of the oral microbiome and immune response among a cohort of underserved US pregnant women. Future randomized clinical trials are warranted to comprehensively assess the impact of PTOR on maternal oral flora, birth outcomes, and their offspring’s oral health.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Date Published:
Journal Name:
Journal of Translational Medicine
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This study aimed to evaluate the impact of Nystatin oral rinse on salivary and supragingival microbiota in adults with oral candidiasis and identify predictive factors related to individuals’ responses to Nystatin. The trial involved twenty participants who used 600,000 International Units/application of Nystatin oral rinse for seven days, four times a day, and were followed up at one week and three months after the rinse. The salivary and plaque microbiome of the participants were assessed via 16S rDNA amplicon sequencing. Overall, salivary and plaque microbiomes remained stable. However, among the participants (53 percent) who responded to Nystatin rinse (defined as free of oral Candida albicans post treatment), Veillonella emerged as a core genus alongside Streptococcus and Actinomyces in supragingival plaque at the 3-month follow-up. Furthermore, statistical models were fit to identify predictive factors of Nystatin rinse success (elimination of C. albicans) or failure (remaining C. albicans). The results revealed that an increased level of salivary Interferon (IFN)-γ-inducible protein (IP-10), also known as C-X-C motif chemokine ligand 10 (CXCL10), was an indicator of a failure of responding to Nystatin rinse. Future clinical trials are warranted to comprehensively assess the impact of antifungal treatment on the oral flora.

    more » « less
  2. Abstract Objectives

    The maternal environment during gestation influences offspring health at birth and throughout the life course. Recent research has demonstrated that endogenous immune processes such as dysregulated inflammation adversely impact birth outcomes, increasing the risk for preterm birth and restricted fetal growth. Prior analyses examining this association suggest a relationship between maternal C‐reactive protein (CRP), a summary measure of inflammation, and offspring anthropometric outcomes. This study investigates pro‐ and anti‐inflammatory cytokines, and their ratio, to gain deeper insight into the regulation of inflammation during pregnancy.


    IL6, IL10, TNFɑ, and CRP were quantified in dried blood spots collected in the early third trimester (mean = 29.9 weeks) of 407 pregnancies in Metropolitan Cebu, Philippines. Relationships between these immune markers and offspring anthropometrics (birth weight, length, head circumference, and sum of skinfold thicknesses) were evaluated using multivariate regression analyses. Ratios of pro‐ to anti‐inflammatory cytokines were generated.


    Higher maternal IL6 relative to IL10 was associated with reduced offspring weight and length at birth. Individual cytokines did not predict birth outcomes.


    Consistent with the idea that the relative balance of cytokines with pro‐ and anti‐inflammatory effects is a key regulator of inflammation in pregnancy, the IL6:IL10 ratio, but neither cytokine on its own, predicted offspring birth outcomes. Our findings suggest that prior reports of association between CRP and fetal growth may reflect, in part, the balance between pro‐ and anti‐inflammatory cytokines, and that the gestational environment is significantly shaped by cytokine imbalance.

    more » « less
  3. Abstract Background

    Exposure to environmental chemicals such as phthalates, phenols, and polycyclic aromatic hydrocarbons (PAHs) during pregnancy can increase the risk of adverse newborn outcomes. We explored the associations between maternal exposure to select environmental chemicals and DNA methylation in cord blood mononuclear cells (CBMC) and placental tissue (maternal and fetal sides) to identify potential mechanisms underlying these associations.


    This study included 75 pregnant individuals who planned to give birth at the University of Cincinnati Hospital between 2014 and 2017. Maternal urine samples during the delivery visit were collected and analyzed for 37 biomarkers of phenols (12), phthalates (13), phthalate replacements (4), and PAHs (8). Cord blood and placenta tissue (maternal and fetal sides) were also collected to measure the DNA methylation intensities using the Infinium HumanMethylation450K BeadChip. We used linear regression, adjusting for potential confounders, to assess CpG-specific methylation changes in CBMC (n = 54) and placenta [fetal (n = 67) and maternal (n = 68) sides] associated with gestational chemical exposures (29 of 37 biomarkers measured in this study). To account for multiple testing, we used a false discovery rate q-values < 0.05 and presented results by limiting results with a genomic inflation factor of 1±0.5. Additionally, gene set enrichment analysis was conducted using the Kyoto Encyclopedia of Genes and Genomics pathways.


    Among the 29 chemical biomarkers assessed for differential methylation, maternal concentrations of PAH metabolites (1-hydroxynaphthalene, 2-hydroxyfluorene, 4-hydroxyphenanthrene, 1-hydroxypyrene), monocarboxyisononyl phthalate, mono-3-carboxypropyl phthalate, and bisphenol A were associated with altered methylation in placenta (maternal or fetal side). Among exposure biomarkers associated with epigenetic changes, 1-hydroxynaphthalene, and mono-3-carboxypropyl phthalate were consistently associated with differential CpG methylation in the placenta. Gene enrichment analysis indicated that maternal 1-hydroxynaphthalene was associated with lipid metabolism and cellular processes of the placenta. Additionally, mono-3-carboxypropyl phthalate was associated with organismal systems and genetic information processing of the placenta.


    Among the 29 chemical biomarkers assessed during delivery, 1-hydroxynaphthalene and mono-3-carboxypropyl phthalate were associated with DNA methylation in the placenta.

    more » « less
  4. Abstract Objectives

    Maternal experiences before pregnancy predict birth outcomes, a key indicator of health trajectories, but the timing and pathways for these effects are poorly understood. Here we test the hypothesis that maternal pre‐adult growth patterns predict pregnancy glucose and offspring fetal growth in Cebu, Philippines.


    Using multiple regression and path analysis, gestational age‐adjusted birthweight and variables reflecting infancy, childhood, and post‐childhood/adolescent weight gain (conditional weights) were used to predict pregnancy HbA1c and offspring birth outcomes among participants in the Cebu Longitudinal Health and Nutrition Survey.


    Maternal early/mid‐childhood weight gain predicted birth weight, length, and head circumference in female offspring. Late‐childhood/adolescent weight gain predicted birth length, birth weight, skinfold thickness, and head circumference in female offspring, and head circumference in male offspring. Pregnancy HbA1c did not mediate relationships between maternal growth and birth size parameters.


    In Cebu, maternal growth patterns throughout infancy, childhood, and adolescence predict fetal growth via a pathway independent of circulating glucose, with stronger impacts on female than male offspring, consistent with a role of developmental nutrition on offspring fetal growth. Notably, the strength of relationships followed a pattern opposite to what occurs in response to acute pregnancy stress, with strongest effects on head circumference and birth length and weakest on skinfolds. We speculate that developmental sensitivities are reversed for stable, long‐term nutritional cues that reflect average local environments. These findings are relevant to public health and life‐history theory as further evidence of developmental influences on health and resource allocation across the life course.

    more » « less
  5. Abstract Background and objectives

    The Developmental Origins of Health and Disease hypothesis posits that early life adversity is associated with poor adult health outcomes. Epidemiological evidence has supported this framework by linking low birthweight with adult health and mortality, but the mechanisms remain unclear. Accelerated epigenetic aging may be a pathway to connect early life experiences with adult health outcomes, based on associations of accelerated epigenetic aging with increased morbidity and mortality.


    Sixty-seven mother-infant dyads were recruited in the eastern Democratic Republic of Congo. Birthweight data were collected at birth, and blood samples were collected at birth and follow-up visits up to age 3. DNA methylation data were generated with the Illumina MethylationEPIC array and used to estimate epigenetic age. A multilevel model was used to test for associations between birthweight and epigenetic age acceleration.


    Chronological age was highly correlated with epigenetic age from birth to age 3 (r = 0.95, p < 2.2 × 10−16). Variation in epigenetic age acceleration increased over time. Birthweight, dichotomized around 2500 g, predicted epigenetic age acceleration over the first 3 years of life (b = −0.39, p = 0.005).

    Conclusions and implications

    Our longitudinal analysis provides the first evidence for accelerated epigenetic aging that emerges between birth and age 3 and associates with low birthweight. These results suggest that early life experiences, such as low birthweight, may shape the trajectory of epigenetic aging in early childhood. Furthermore, accelerated epigenetic aging may be a pathway that links low birthweight and poor adult health outcomes.

    more » « less