skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Making Steppingstones out of Stumbling Blocks: A Bayesian Model Evidence Estimator with Application to Groundwater Transport Model Selection
Bayesian model evidence (BME) is a measure of the average fit of a model to observation data given all the parameter values that the model can assume. By accounting for the trade-off between goodness-of-fit and model complexity, BME is used for model selection and model averaging purposes. For strict Bayesian computation, the theoretically unbiased Monte Carlo based numerical estimators are preferred over semi-analytical solutions. This study examines five BME numerical estimators and asks how accurate estimation of the BME is important for penalizing model complexity. The limiting cases for numerical BME estimators are the prior sampling arithmetic mean estimator (AM) and the posterior sampling harmonic mean (HM) estimator, which are straightforward to implement, yet they result in underestimation and overestimation, respectively. We also consider the path sampling methods of thermodynamic integration (TI) and steppingstone sampling (SS) that sample multiple intermediate distributions that link the prior and the posterior. Although TI and SS are theoretically unbiased estimators, they could have a bias in practice arising from numerical implementation. For example, sampling errors of some intermediate distributions can introduce bias. We propose a variant of SS, namely the multiple one-steppingstone sampling (MOSS) that is less sensitive to sampling errors. We evaluate these five estimators using a groundwater transport model selection problem. SS and MOSS give the least biased BME estimation at an efficient computational cost. If the estimated BME has a bias that covariates with the true BME, this would not be a problem because we are interested in BME ratios and not their absolute values. On the contrary, the results show that BME estimation bias can be a function of model complexity. Thus, biased BME estimation results in inaccurate penalization of more complex models, which changes the model ranking. This was less observed with SS and MOSS as with the three other methods.  more » « less
Award ID(s):
1552329
PAR ID:
10483232
Author(s) / Creator(s):
;
Editor(s):
Elshall, Ahmed; Ye, Ming
Publisher / Repository:
Water
Date Published:
Journal Name:
Water
Volume:
11
Issue:
8
ISSN:
2073-4441
Page Range / eLocation ID:
1579
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Generalized cross-validation (GCV) is a widely used method for estimating the squared out-of-sample prediction risk that employs scalar degrees of freedom adjustment (in a multiplicative sense) to the squared training error. In this paper, we examine the consistency of GCV for estimating the prediction risk of arbitrary ensembles of penalized least-squares estimators. We show that GCV is inconsistent for any finite ensemble of size greater than one. Towards repairing this shortcoming, we identify a correction that involves an additional scalar correction (in an additive sense) based on degrees of freedom adjusted training errors from each ensemble component. The proposed estimator (termed CGCV) maintains the computational advantages of GCV and requires neither sample splitting, model refitting, or out-of-bag risk estimation. The estimator stems from a finer inspection of the ensemble risk decomposition and two intermediate risk estimators for the components in this decomposition. We provide a non-asymptotic analysis of the CGCV and the two intermediate risk estimators for ensembles of convex penalized estimators under Gaussian features and a linear response model. Furthermore, in the special case of ridge regression, we extend the analysis to general feature and response distributions using random matrix theory, which establishes model-free uniform consistency of CGCV. 
    more » « less
  2. Nonparametric model-assisted estimators have been proposed to improve estimates of finite population parameters. Flexible nonparametric models provide more reliable estimators when a parametric model is misspecified. In this article, we propose an information criterion to select appropriate auxiliary variables to use in an additive model-assisted method. We approximate the additive nonparametric components using polynomial splines and extend the Bayesian Information Criterion (BIC) for finite populations. By removing irrelevant auxiliary variables, our method reduces model complexity and decreases estimator variance. We establish that the proposed BIC is asymptotically consistent in selecting the important explanatory variables when the true model is additive without interactions, a result supported by our numerical study. Our proposed method is easier to implement and better justified theoretically than the existing method proposed in the literature. 
    more » « less
  3. Nonparametric model-assisted estimators have been proposed to improve estimates of finite population parameters. Flexible nonparametric models provide more reliable estimators when a parametric model is misspecified. In this article, we propose an information criterion to select appropriate auxiliary variables to use in an additive model-assisted method. We approximate the additive nonparametric components using polynomial splines and extend the Bayesian Information Criterion (BIC) for finite populations. By removing irrelevant auxiliary variables, our method reduces model complexity and decreases estimator variance. We establish that the proposed BIC is asymptotically consistent in selecting the important explanatory variables when the true model is additive without interactions, a result supported by our numerical study. Our proposed method is easier to implement and better justified theoretically than the existing method proposed in the literature. 
    more » « less
  4. In this paper, we propose improved estimation method for logistic regression based on subsamples taken according the optimal subsampling probabilities developed in Wang et al. (2018). Both asymptotic results and numerical results show that the new estimator has a higher estimation efficiency. We also develop a new algorithm based on Poisson subsampling, which does not require to approximate the optimal subsampling probabilities all at once. This is computationally advantageous when available random-access memory is not enough to hold the full data. Interestingly, asymptotic distributions also show that Poisson subsampling produces a more efficient estimator if the sampling ratio, the ratio of the subsample size to the full data sample size, does not converge to zero. We also obtain the unconditional asymptotic distribution for the estimator based on Poisson subsampling. Pilot estimators are required to calculate subsampling probabilities and to correct biases in un-weighted estimators; interestingly, even if pilot estimators are inconsistent, the proposed method still produce consistent and asymptotically normal estimators. 
    more » « less
  5. In Internet of Things (IoT) applications requiring parameter estimation, sensors often transmit quantized observations to a fusion center through a wireless medium where the observations are susceptible to unauthorized eavesdropping. The fusion center uses the received data to estimate desired parameters. To provide security to such networks, some low complexity encryption approaches have been proposed. In this paper, we generalize those approaches and present an analysis of their estimation and secrecy capabilities. We show that the dimension of the unknown parameter that can be efficiently estimated using an unbiased estimator when using these approaches, is upper bounded. Assuming that an unauthorized eavesdropper is aware of the low complexity encryption process but is unaware of the encryption key, we show successful eavesdropping, even with a large number of observations, is impossible with unbiased estimators and independent observations for these approaches. Numerical results validating our analysis are presented. 
    more » « less