skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Robust, scalable, and informative clustering for diverse biological networks
Abstract Clustering molecular data into informative groups is a primary step in extracting robust conclusions from big data. However, due to foundational issues in how they are defined and detected, such clusters are not always reliable, leading to unstable conclusions. We compare popular clustering algorithms across thousands of synthetic and real biological datasets, including a new consensus clustering algorithm—SpeakEasy2: Champagne. These tests identify trends in performance, show no single method is universally optimal, and allow us to examine factors behind variation in performance. Multiple metrics indicate SpeakEasy2 generally provides robust, scalable, and informative clusters for a range of applications.  more » « less
Award ID(s):
2214216
PAR ID:
10483248
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
BMC
Date Published:
Journal Name:
Genome Biology
Edition / Version:
1
Volume:
24
Issue:
1
ISSN:
1474-760X
Subject(s) / Keyword(s):
biological networks, community detection, robust clustering, scalabilty
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We consider the problem of clustering with the longest-leg path distance (LLPD) metric, which is informative for elongated and irregularly shaped clusters. We prove finite-sample guarantees on the performance of clustering with respect to this metric when random samples are drawn from multiple intrinsically low-dimensional clusters in high-dimensional space, in the presence of a large number of highdimensional outliers. By combining these results with spectral clustering with respect to LLPD, we provide conditions under which the Laplacian eigengap statistic correctly determines the number of clusters for a large class of data sets, and prove guarantees on the labeling accuracy of the proposed algorithm. Our methods are quite general and provide performance guarantees for spectral clustering with any ultrametric. We also introduce an efficient, easy to implement approximation algorithm for the LLPD based on a multiscale analysis of adjacency graphs, which allows for the runtime of LLPD spectral clustering to be quasilinear in the number of data points. 
    more » « less
  2. null (Ed.)
    We consider the problem of clustering with the longest-leg path distance (LLPD) metric, which is informative for elongated and irregularly shaped clusters. We prove finite-sample guarantees on the performance of clustering with respect to this metric when random samples are drawn from multiple intrinsically low-dimensional clusters in high-dimensional space, in the presence of a large number of high-dimensional outliers. By combining these results with spectral clustering with respect to LLPD, we provide conditions under which the Laplacian eigengap statistic correctly determines the number of clusters for a large class of data sets, and prove guarantees on the labeling accuracy of the proposed algorithm. Our methods are quite general and provide performance guarantees for spectral clustering with any ultrametric. We also introduce an efficient, easy to implement approximation algorithm for the LLPD based on a multiscale analysis of adjacency graphs, which allows for the runtime of LLPD spectral clustering to be quasilinear in the number of data points. 
    more » « less
  3. We consider the problem of clustering with the longest-leg path distance (LLPD) metric, which is informative for elongated and irregularly shaped clusters. We prove finite-sample guarantees on the performance of clustering with respect to this metric when random samples are drawn from multiple intrinsically low-dimensional clusters in high-dimensional space, in the presence of a large number of high-dimensional outliers. By combining these results with spectral clustering with respect to LLPD, we provide conditions under which the Laplacian eigengap statistic correctly determines the number of clusters for a large class of data sets, and prove guarantees on the labeling accuracy of the proposed algorithm. Our methods are quite general and provide performance guarantees for spectral clustering with any ultrametric. We also introduce an efficient, easy to implement approximation algorithm for the LLPD based on a multiscale analysis of adjacency graphs, which allows for the runtime of LLPD spectral clustering to be quasilinear in the number of data points. 
    more » « less
  4. Birol, Inanc (Ed.)
    Abstract Motivation Gene clustering is a widely-used technique that has enabled computational prediction of unknown gene functions within a species. However, it remains a challenge to refine gene function prediction by leveraging evolutionarily conserved genes in another species. This challenge calls for a new computational algorithm to identify gene co-clusters in two species, so that genes in each co-cluster exhibit similar expression levels in each species and strong conservation between the species. Results Here we develop the bipartite tight spectral clustering (BiTSC) algorithm, which identifies gene co-clusters in two species based on gene orthology information and gene expression data. BiTSC novelly implements a formulation that encodes gene orthology as a bipartite network and gene expression data as node covariates. This formulation allows BiTSC to adopt and combine the advantages of multiple unsupervised learning techniques: kernel enhancement, bipartite spectral clustering, consensus clustering, tight clustering, and hierarchical clustering. As a result, BiTSC is a flexible and robust algorithm capable of identifying informative gene co-clusters without forcing all genes into co-clusters. Another advantage of BiTSC is that it does not rely on any distributional assumptions. Beyond cross-species gene co-clustering, BiTSC also has wide applications as a general algorithm for identifying tight node co-clusters in any bipartite network with node covariates. We demonstrate the accuracy and robustness of BiTSC through comprehensive simulation studies. In a real data example, we use BiTSC to identify conserved gene co-clusters of D. melanogaster and C. elegans, and we perform a series of downstream analysis to both validate BiTSC and verify the biological significance of the identified co-clusters. Availability and implementation The Python package BiTSC is open-access and available at https://github.com/edensunyidan/BiTSC. 
    more » « less
  5. Abstract In hydrology, a fundamental task involves enhancing the predictive power of a model in ungagged basins by transferring information on physical attributes and hydroclimate dynamics from gauged basins. Introducing an integrated nonlinear clustering framework, this study aims to develop a comprehensive framework that augments predictive performance in basins where direct measurements are sparse or absent. In this framework, uniform manifold approximation and projection (UMAP) is used as a nonlinear method to extract the essential features embedded in hydro‐climatological attributes and physical properties. Then, the Growing Neural Gas (GNG) clustering model is used to find the basins that potentially share similar hydro‐climatological behaviors. Besides UMAP‐GNG, the integration of Principal Component Analysis (PCA) as a linear method to reduce dimensionality with common clustering methods are also assessed to serve as benchmarks. The results reveal that the combination of clustering algorithms with the PCA method may lead to loss of information while the nonlinear method (UMAP) can extract more informative features. The efficacy of the proposed framework is assessed across the Contiguous United States (CONUS) by training a single Base Model using long short‐term memory (LSTM) for the centroids of all clusters and then, fine‐tuning the model on the centroids of each cluster separately to create a regional model. The results indicate that using the information extracted by the UMAP‐GNG method to guide a Base Model can significantly improve the accuracy in most of the clusters and enhance the median prediction accuracy within different clusters from 0.04 to 0.37 of KGE in ungauged basins. 
    more » « less