skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Examining interactions between dominant discourses and engineering educational concepts in teachers' pedagogical reasoning
Background:Engineering's introduction into K–12 classrooms has been purported to support meaningful and inclusive learning environments. However, teachers must contend with dominant discourses embedded in US schooling that justify inequitable distributions of resources. Purpose:Drawing on Gee's notion of discourses, we examine how teachers incorporate language legitimizing socially and culturally constructed values and beliefs. In particular, we focus on the discourse of ability hierarchy—reflecting dominant values of sorting and ranking students based on perceived academic abilities—and the discourse of individual blame—reflecting dominant framings of educational problems as solely the responsibility of individual students or families. We aim to understand how these discourses surface in teachers' reasoning about teaching engineering. Method:We interviewed 15 teachers enrolled in an online graduate program in engineering education. Utilizing critical discourse analysis, we analyzed how teachers drew on discourses of blame and ability hierarchy when reasoning about problems of practice in engineering. Results:Teachers drew on engineering education concepts to reinforce dominant discourses (echoing specific language and preserving given roles) as well as to disrupt (utilizing different language or roles that [implicitly] challenge) dominant discourses. Importantly, teachers could also retool discourses of ability hierarchy (arguing for a more equitable distribution of resources but problematically preserving the values of ranking and sorting students). Conclusions:K–12 schooling's sociohistorical context can shape how teachers make sense of engineering in ways that implicate race, gender, disability, and language, suggesting a need to grapple with how discourses from schooling—and engineering culture—maintain marginalizing environments for students.  more » « less
Award ID(s):
1720334
PAR ID:
10483260
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Journal of Engineering Education
Date Published:
Journal Name:
Journal of Engineering Education
ISSN:
1069-4730
Subject(s) / Keyword(s):
discourse analysis, K–12 teachers, pedagogical reasoning
Format(s):
Medium: X Size: N/A Other: N/A
Size(s):
N/A
Sponsoring Org:
National Science Foundation
More Like this
  1. N/A (Ed.)
    Teachers can play critical roles in challenging or reinscribing dominant narratives about what counts as STEM, who is seen within STEM disciplines, and how these disciplines should be taught. However, teachers have often experienced STEM in limited ways in their own education and are thereby provided with few resources for re-imagining these disciplines. While teacher educators have designed learning environments that engage teachers in new forms of disciplinary activities, there have been few accounts that describe how teachers make connections between these experiences and dominant narratives that impact their own and their students’ learning. In this study, I report on the experiences of Alma, a white, working-class, female elementary teacher in an online graduate certificate program for K-12 engineering educators. Through her engagement in engineering design in the program, Alma appropriated—transformed and made her own—discourse of the engineering design process in ways that trouble some of the narratives that restrict her, her family, and her students in STEM and in school. Alma’s experiences emphasize the need to consider not just what teachers learn about disciplinary tools and discourses, but how they transform these for their own purposes and contexts. 
    more » « less
  2. Lamberg, T. (Ed.)
    This paper focuses on the trajectories of two mathematics teachers in developing Political Conocimiento through one year of Professional Development (PD) on culturally responsive mathematics teaching. The PD was organized around teacher and student noticing, positionality, community partnerships and action research. The study found that the teachers’ discourse practices shifted from whiteness pedagogies towards politicized notions of schooling, caring, and mathematics learning. The paper discusses the dominant ideologies that teachers reproduced in their discourses around mathematics education and interactions with students. It also illustrates the teachers’ trajectories of Political Conocimiento through the deconstruction of the role that race plays in their positionalities, their classrooms, and school. 
    more » « less
  3. Lamberg, Teruni; Moss, Diana L (Ed.)
    We investigate teacher beliefs about discourses for equation solving and the challenges these beliefs might pose for the implementation of instructional practices that promote deductive reasoning in algebra. To uncover these beliefs, we recorded three video explanations of solutions to the same linear equation with distinct discursive characteristics and analyzed seven secondary mathematics teachers’ small-group critical discussions of these explanations. Three prevalent themes surfaced in our thematic analysis. Teacher beliefs about discourse for equation solving specified different roles and potential benefits of deductive explanations, estimated students’ capacity to understand deductive explanations, and hypothesized differences between teachers' and students' potential to understand deductive reasoning. We discuss implications of these beliefs for opportunities to engage all learners in conceptual thinking about equations. 
    more » « less
  4. Christiansen, I (Ed.)
    Despite the importance of reasoning and proving in mathematics and mathematics education, little is known about how future teachers become proficient in integrating reasoning and proving in their teaching practices. In this article, we characterize this aspect of prospective secondary mathematics teachers’ (PSTs’) professional learning by drawing upon the commognitive theory. We offer a triple-layer conceptualization of (student)learning,teaching, andlearning to teachmathematics via reasoning and proving by focusing on the discourses students participate in (learning), the opportunities for reasoning and proving afforded to them (teaching), and how PSTs design and enrich such opportunities (learning to teach). We explore PSTs’ pedagogical discourse anchored in the lesson plans they designed, enacted, and modified as part of their participation in a university-based course:Mathematical Reasoning and Proving for Secondary Teachers. We identified four types of discursive modifications: structural, mathematical, reasoning-based, and logic-based. We describe how the potential opportunities for reasoning and proving afforded to students by these lesson plans changed as a result of these modifications. Based on our triple-layered conceptualization we illustrate how the lesson modifications and the resulting alterations to student learning opportunities can be used to characterize PSTs’ professional learning. We discuss the affordances of theorizing teacher practices with the same theoretical lens (grounded in commognition) to inquire student learning and teacher learning, and how lesson plans, as a proxy of teaching practices, can be used as a methodological tool to better understand PSTs’ professional learning. 
    more » « less
  5. Rich classroom discussion, or discourse, has long been a recommended pedagogical practice in K-12 math and science education. Research shows that discourse is beneficial for all learners, but especially for English learners and minoritized students in STEM. Discourse helps develop students' agency, academic language, and conceptual understanding. Some K-12 computer science (CS) curricula incorporate student discourse, but we believe it is under-used. In this paper, we review how discourse helps students learn, discuss the use of discourse in CS and math education, share ideas for promoting discourse in CS classrooms, and call on curriculum developers, teacher professional learning providers, and researchers to support the increased use of discourse in K-12 CS education. 
    more » « less