skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Board 123: Engaging Teachers in Authentic Engineering Design Tasks to Refine their Disciplinary Understandings (Work In Progress)
This work-in-progress papers shares the results of the qualitative analysis of the way in which eleven elementary teachers’ understanding and stance toward engineering design changed as a result of engaging in adult-level engineering design projects. Identified themes showed that many teachers had more expansive conceptions of the engineering design process models and steps and that these understanding had connections to their pedagogical thinking about engineering with children. Implications of these findings and themes for teacher professional development standards, professional development design, and interactions between content knowledge and pedagogical knowledge are discussed.  more » « less
Award ID(s):
1657509
PAR ID:
10483265
Author(s) / Creator(s):
; ;
Publisher / Repository:
ASEE Conferences
Date Published:
Journal Name:
American Society of Engineering Education Annual Conference
Subject(s) / Keyword(s):
K12 teachers, pre-college engineering education, engineering design tasks
Format(s):
Medium: X
Location:
Tampa, Florida
Sponsoring Org:
National Science Foundation
More Like this
  1. Pre-college engineering teachers bring unique backgrounds to their teaching practice. Many engineering teachers follow a non-traditional route to teaching engineering, often coming to engineering from teaching other subjects or from careers in other fields. Among the many variations influencing engineering teaching practices is pedagogical content knowledge (PCK), defined as the “the knowledge of, reasoning behind, and enactment of the teaching of particular topics in a particular way with particular students for particular reasons for enhanced student outcomes [1]”. This multiple case study explores the PCK of five middle school engineering teachers implementing the same middle school engineering curriculum, STEM-ID. The 18- week STEM-ID curriculum engages students in contextualized challenges that incorporate foundational mathematics and science practices and advanced manufacturing tools such as computer aided design (CAD) and 3D printing, while introducing engineering concepts like pneumatics, aeronautics, and robotics. Drawing on observation and interview data collected over the course of two semester-long implementations of STEM-ID, the study addresses the research question: What variations in PCK are evident among engineering teachers with different professional backgrounds and levels of experience? Five teachers were purposively selected from a larger group of teachers implementing the curriculum because they represent a range of professional backgrounds: one veteran engineering teacher, one former Math teacher, one former Science teacher, one former English/Language Arts teacher, and one novice teacher with a background in the software industry. The study utilizes the Refined Consensus Model of PCK to investigate connections between teacher backgrounds, personal PCK (pPCK), the personalized professional knowledge held by teachers, and enacted PCK (ePCK), the knowledge teachers draw on to engage in pedagogical reasoning while planning, teaching, and reflecting on their practice. Observation, interview, and survey data were triangulated to develop narrative case summaries describing each teacher’s PCK, which were then subjected to cross-case analysis to identify patterns and themes across teachers. Findings describe how teachers’ backgrounds translated into diverse forms of pPCK that informed the pedagogical moves and decisions teachers made as they implemented the curriculum (ePCK). Regardless of the previous subject taught (math, science, or ELA), teachers routinely drew upon their pPCK in other subjects as they facilitated the engineering design process. Teachers with previous experience teaching math or science tended to be more likely than others to foreground the integration of math or science within the curriculum. Comparison of ePCK observed as teachers implemented the curriculum revealed that, in spite of having a more fully developed pPCK in teaching engineering, the veteran engineering teacher did not exhibit more sophisticated ePCK than novice engineering teachers. In addition to contributing to the field’s understanding of engineering teachers’ PCK, these findings hold implications for the recruitment, retention, and professional development of engineering teachers. 
    more » « less
  2. Effective and equitable CS teaching in classrooms is contingent on teachers' high-levels of self-efficacy in CS as well as a robust understanding of equity issues in CS classrooms. To this end, our study examined the influence of a professional development (PD) course, Teaching Exploring Computer Science (TECS), on promoting teacher self-efficacy and equity awareness in CS education. This nine-week PD was offered in a hybrid format, delivering on-line and face-to-face classes to high school teachers across various disciplines who served under-represented students. The participants completed a selfefficacy survey focusing on their ability to teach ECS, both before and after the course. Results showed that teachers' selfefficacy in the content knowledge and pedagogical knowledge of ECS significantly increased as a result of taking the course. We also evaluated teacher's understanding of the equity issues by conducting a content analysis of their reflection essays written at the end of the course. Four major themes emerged from the content analysis, highlighting the impact of equitable practices on CS participation. This research demonstrates the role of a professional development course in promoting teachers' self-efficacy beliefs in teaching CS and their understanding of the equity issues and presents tools for assessing teachers' development in these areas. 
    more » « less
  3. Despite the critical role of teachers in the educational process, few advanced learning technologies have been developed to support teacher-instruction or professional development. This lack of support is particularly acute for middle school math teachers, where only 37% felt well prepared to scaffold instruction to address the needs of diverse students in a national sample. To address this gap, the Advancing Middle School Teachers’ Understanding of Proportional Reasoning project is researching techniques to apply pedagogical virtual agents and dialog-based tutoring to enhance teachers' content knowledge and pedagogical content knowledge. This paper describes the design of a conversational, agent-based intelligent tutoring system to support teachers' professional development. Pedagogical strategies are presented that leverage a virtual human facilitator to tutor pedagogical content knowledge (how to teach proportions to students), as opposed to content knowledge (understanding proportions). The roles for different virtual facilitator capabilities are presented, including embedding actions into virtual agent dialog, open-response versus choice-based tutoring, ungraded pop-up sub-activities (e.g. whiteboard, calculator, note-taking). Usability feedback for a small cohort of instructors pursuing graduate studies was collected. In this feedback, teachers rated the system ease of use and perceived usefulness moderately well, but also reported confusion about what to expect from the system in terms of flow between lessons and support by the facilitator. 
    more » « less
  4. The purpose of this qualitative case study was to investigate how two primary preservice teachers built their engineering education identities during a clinical field experience that emphasized engineering education. More specifically, we explored the development of their engineering education identities while facing unforeseen circumstances and unfamiliar engineering content. We used a nested qualitative case study approach that was bounded by a university practicum field experience that took place at the height of the COVID-19 pandemic. Data sources included preservice teacher interviews and reflective field notes. We found that the preservice teachers faced a series of contextual factors in the clinical experience that both afforded and constrained professional learning opportunities that influenced their identity development. The affordances made professional learning opportunities possible, while the constraints limited professional growth. We also found that it was the negotiation of the factors, where the preservice teachers worked to mitigate the effect of the constraints while maximizing the advantages of the affordances, that had the greatest influence on their engineering pedagogical knowledge and engineering teaching self-efficacy. Findings from this study could provide teacher educators with insight into preparing primary teachers for unexpected challenges when teaching engineering, as well as how to best prepare engineering-efficacious teachers. 
    more » « less
  5. Integrated STEM approaches in K-12 science and math instruction can be more engaging and meaningful for students and often meet the curriculum content and practice goals better than single-subject lessons. Engineering, as a key component of STEM education, offers hands-on, designed-based, problem solving activities to drive student interest and confidence in STEM overall. However, K-12 STEM teachers may not feel equipped to implement engineering practices and may even experience anxiety about trying them out in their classrooms without the added support of professional development and professional learning communities. To address these concerns and support engineering integration, this research study examined the experiences of 18 teachers in one professional development program dedicated to STEM integration and engineering pedagogy for K-12 classrooms. This professional development program positioned the importance of the inclusion of engineering content and encouraged teachers to explore community-based, collaborative activities that identified and spoke to societal needs and social impacts through engineering integration. Data collected from two of the courses in this project, Enhancing Mathematics with STEM and Engineering in the K-12 Classroom, included participant reflections, focus groups, microteaching lesson plans, and field notes. Through a case study approach and grounded theory analysis, themes of self-efficacy, active learning supports, and social justice teaching emerged. The following discussion on teachers’ engineering and STEM self-efficacy, teachers’ integration of engineering to address societal needs and social impacts, and teachers’ development in engineering education through hands-on activities, provides better understanding of engineering education professional development for K-12 STEM teachers. 
    more » « less