Abstract Most climate models still suffer large warm and dry summer biases in the central United States (CUS). As a solution, we improved cumulus parameterization to represent 1) the lifting effect of small-scale rising motions associated with Great Plains low-level jets and midtropospheric perturbations by defining the cloud base at the level of condensation, 2) the constraint of the cumulus entrainment rate depending on the boundary layer depth, and 3) the temperature-dependent cloud-to-rainwater conversion rate. These improvements acted to (i) trigger mesoscale convective systems in unfavorable environmental conditions to enhance total rainfall amount, (ii) lower cloud base and increase cloud depth to increase low-level clouds and reduce surface shortwave radiation, (iii) suppress penetrative cumuli from shallow boundary layers to remedy the overestimation of precipitation frequency, and (iv) increase water detrainment to form sufficient cirrus clouds and balanced outgoing longwave radiation. Much of these effects were nonlocal and nonlinear, where more frequent but weaker convective rainfall led to stronger (and sometimes more frequent) large-scale precipitation remotely. Together, they produced consistently heavier precipitation and colder temperature with a realistic atmospheric energy balance, essentially eliminating the CUS warm and dry biases through robust physical mechanisms.
more »
« less
Understanding and Reducing Warm and Dry Summer Biases in the Central United States: Analytical Modeling to Identify the Mechanisms for CMIP Ensemble Error Spread
Abstract Most climate models in phase 6 of the Coupled Model Intercomparison Project (CMIP6) still suffer pronounced warm and dry summer biases in the central United States (CUS), even in high-resolution simulations. We found that the cloud base definition in the cumulus parameterization was the dominant factor determining the spread of the biases among models and those defining cloud base at the lifting condensation level (LCL) performed the best. To identify the underlying mechanisms, we developed a physically based analytical bias model (ABM) to capture the key feedback processes of land–atmosphere coupling. The ABM has significant explanatory power, capturing 80% variance of temperature and precipitation biases among all models. Our ABM analysis via counterfactual experiments indicated that the biases are attributed mostly by surface downwelling longwave radiation errors and second by surface net shortwave radiation errors, with the former 2–5 times larger. The effective radiative forcing from these two errors as weighted by their relative contributions induces runaway temperature and precipitation feedbacks, which collaborate to cause CUS summer warm and dry biases. The LCL cumulus reduces the biases through two key mechanisms: it produces more clouds and less precipitable water, which reduce radiative energy input for both surface heating and evapotranspiration to cause a cooler and wetter soil; it produces more rainfall and wetter soil conditions, which suppress the positive evapotranspiration–precipitation feedback to damp the warm and dry bias coupling. Most models using non-LCL schemes underestimate both precipitation and cloud amounts, which amplify the positive feedback to cause significant biases.
more »
« less
- Award ID(s):
- 1639327
- PAR ID:
- 10483333
- Publisher / Repository:
- Journal of Climate
- Date Published:
- Journal Name:
- Journal of Climate
- Volume:
- 36
- Issue:
- 7
- ISSN:
- 0894-8755
- Page Range / eLocation ID:
- 2035 to 2054
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Southwest North America is projected by models to aridify, defined as declining summer soil moisture, under the influence of rising greenhouse gases. Here, we investigate the driving mechanisms of aridification that connect the oceans, atmosphere, and land surface across seasons. The analysis is based on atmosphere model simulations forced by imposed sea surface temperatures (SSTs). For the historical period, these are the observed ones, and the model is run to 2041 using SSTs that account for realistic and plausible evolutions of Pacific Ocean and Atlantic Ocean interannual to decadal variability imposed on estimates of radiatively forced SST change. The results emphasize the importance of changes in precipitation throughout the year for declines in summer soil moisture. In the worst-case scenario, a cool tropical Pacific and warm North Atlantic lead to reduced cool season precipitation and soil moisture. Drier soils then persist into summer such that evapotranspiration reduces and soil moisture partially recovers. In the best-case scenario, the opposite states of the oceans lead to increased cool season precipitation but higher evapotranspiration prevents this from increasing summer soil moisture. Across the scenarios, atmospheric humidity is primarily controlled by soil moisture: drier soils lead to reduced evapotranspiration, lower air humidity, and higher vapor pressure deficit (VPD). Radiatively forced change reduces fall precipitation via anomalous transient eddy moisture flux divergence. Fall drying causes soils to enter winter dry such that, even in the best-case scenario of cool season precipitation increase, soil moisture remains dry. Radiative forcing reduces summer precipitation aided by reduced evapotranspiration from drier soils. Significance StatementSouthwest North America has long been projected to undergo aridification under rising greenhouse gases. In this model-based paper, we examine how coupling across seasons between the atmosphere and land system moves the region toward reduced summer soil moisture. The results show the dominant control on summer soil moisture by precipitation throughout the year. It also shows that even in best-case scenarios when changes in decadal modes of ocean variability lead to increases in cool season precipitation, rising spring and summer evapotranspiration means this does not translate into increased summer soil moisture. The work places projections of regional aridification on a firmer basis of understanding of the ocean driving of the atmosphere and its coupling to the land system.more » « less
-
Abstract Clouds and radiation play an important role in warming events over the Southern Ocean (SO). Here we evaluate European Center for Medium‐Range Weather Forecasts Reanalysis version 5 (ERA5) and Polar Weather Research Forecast (PWRF) output through comparison to surface‐based measurements of clouds, radiation, and the atmospheric state over the SO during 2017–2023 at Escudero Station (62.2°S, 58.97°W) on King George Island. ERA5 mean monthly downward shortwave (DSW) radiative fluxes are found to be 38–50 W m−2higher than observations in summer, whereas ERA5 mean monthly downward longwave (DLW) is biased by −18 to −22 W m−2in summer and −16 W m−2on average over the year. Comparisons of temperature, humidity, and lowest‐cloud base heights between ERA5 and observations rule these factors out as large contributors to the DLW flux biases. The similarity between observed DLW cloud forcing distributions for atmospheric columns containing low‐level liquid and ice‐only clouds suggests limited influence of cloud phase errors on DLW biases. Thus the most likely explanation for DLW flux biases in ERA5 is underestimated cloud optical depth, which is also consistent with DSW flux biases. Similar biases in ERA5 are found during atmospheric river (AR) events. By contrast, PWRF flux bias magnitudes are much smaller during AR events (−12 W m−2for DSW and −2 W m−2for DLW). After bias correction, ERA5 monthly average net cloud forcing over 2017–2023 is found to be a minimum of −107 W m−2in January and a maximum of 65 W m−2in June.more » « less
-
Abstract Dynamical downscaling with a 20 km horizontal resolution was undertaken over East Asia for the period May–August in 1991–2015 using the Weather Research and Forecasting (WRF) model with Grell-3D ensemble cumulus parameterization as a product of the Impact of Initialized Land Temperature and Snowpack on Sub-Seasonal to Seasonal Prediction (LS4P) program. Simulated climatological precipitation biases were investigated over land during June when heavy precipitation occurred. Simulations underestimated precipitation along the Meiyu/Baiu rainband, while overestimating it farther north. Dry and wet biases expanded to south and north of the Yangtze River in China, respectively, marking years with poor precipitation simulations. Model biases in synoptic-scale circulation patterns indicate a weakened clockwise circulation over the western North Pacific in the model due to active convection there, and suppressed northward moisture transport to the Meiyu/Baiu rainband. Moisture convergence was slightly enhanced over central China due to an apparent anticyclonic circulation bias over northern China. In years with large biases, positive feedback between reduced moisture inflow and inactive convection occurred over southern China, while moisture transport to central China intensified on regional scales, with amplification of dry and wet biases over China. The Kain–Fritch scheme was used to test the influence of cumulus parameterization, improving the dry bias over southern China due to the modification of synoptic-scale circulation patterns in the lower troposphere. However, precipitation was further overestimated over central China, with the accuracy of precipitation distribution deteriorating.more » « less
-
Abstract The impact of convective closure on the double‐ITCZ bias in the NCAR CESM2.2 is investigated in this study. The standard CESM2.2 simulates a remarkable double‐ITCZ bias in the central and eastern Pacific, especially in boreal winter and spring. Modifications to the closure in convection parameterization scheme greatly reduce the double‐ITCZ bias in all seasons, demonstrating that convection parameterization can substantially influence the double‐ITCZ bias in CESM2.2. Further analyses suggest that convection parameterization can modulate the tropical atmosphere‐ocean feedback processes, through which it influences the SST in the southern ITCZ region and hence the double‐ITCZ bias. The changes in the upper ocean temperature advection induced by modified convective closure plays important roles in reducing the warm SST bias and double‐ITCZ precipitation bias in the southern ITCZ region. The modified convective closure improves the low‐level cloud and shortwave cloud radiative forcing in the southeastern Pacific. However, surface heat flux plays only a limited role in reducing warm SST bias and double ITCZ bias because the impacts of shortwave radiation changes are largely canceled by changes in longwave radiation and latent heat flux.more » « less
An official website of the United States government

