skip to main content


Title: Mechanisms of Morphing Wall Flow Control by Traveling Waves over an Airfoil

The main two mechanisms of morphing wall flow control are direct injection of momentum in the streamwise direction and indirect momentum transfer via triggering instabilities. Traveling waves have been shown to perform better than standing waves, probably because they can use both mechanisms. However, the relative importance of the two mechanisms is not known. To differentiate between the mechanisms, a range of parameters (frequency, amplitude, and starting location) at stall (15 deg angle of attack) and poststall (20 deg angle of attack) is tested using wall-resolved large-eddy simulations with a sharp-interface curvilinear immersed boundary method at a low Reynolds number of [Formula: see text] over a NACA0018 airfoil. The results of the simulations demonstrate that the flow is reattached within a range of nondimensional frequencies, actuation amplitudes, and starting locations of oscillation at the stall and poststall angles of attack. Significant lift enhancement and drag reduction are also observed within these ranges. The nondimensional frequency range at which the flow is reattached is found to be similar to the dominant nondimensional frequencies of leading-edge vortex shedding of the unactuated airfoil. These indicate that the indirect transfer of momentum is the dominant mechanism because direct injection of momentum increases with the increase of amplitude and frequency; that is, separation should reduce as they increase. Nevertheless, direct injection of momentum improves the performance relative to pure excitations of standing waves when instabilities are triggered.

 
more » « less
Award ID(s):
1905355
NSF-PAR ID:
10483394
Author(s) / Creator(s):
; ;
Publisher / Repository:
AIAA
Date Published:
Journal Name:
AIAA Journal
Volume:
61
Issue:
4
ISSN:
0001-1452
Page Range / eLocation ID:
1687 to 1707
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Large-eddy simulations (LESs) of low-Reynolds-number flow (Re=50,000) over a NACA0018 airfoil are performed to investigate flow control at the stall angle of attack (15 deg) by low-amplitude surface waves (actuations) of different types (backward/forward traveling and standing waves) on the airfoil’s suction side. It is found that the backward (toward downstream) traveling waves, inspired from aquatic swimmers, are more effective than forward traveling and standing wave actuations. The results of simulations show that a backward traveling wave with a reduced frequency f∗=4 (f∗=fL/U, where f is frequency; L, chord length; and U, free flow velocity), a nondimensional wavelength λ∗=0.2 (λ∗=λ/L, where λ is dimensional wavelength), and a nondimensional amplitude a∗=0.002 (a∗=a/L, where a is dimensional amplitude) can suppress stall. In contrast, the flow over the airfoil with either standing or forward traveling wave actuations separates from the leading edge similar to the baseline. Consequently, the backward traveling wave creates the highest lift-to-drag ratio. For traveling waves at a higher amplitude (a∗=0.008), however, the shear layer becomes unstable from the actuation point and creates periodic coherent structures. Therefore, the lift coefficient decreases compared with the low-amplitude case. 
    more » « less
  2. Large-eddy simulations (LES) of the fluid flow over a NACA0018 airfoil at AOA =20 degrees angle of attack are performed to investigate the effect of surface morphing oscillations on the aerodynamic performance of the airfoil over a wide range of Reynolds numbers (Re = 5,000 to 500,000). These oscillations are in the form of low amplitude backward (opposite to the airfoil's forward motion) traveling wave actuations on the upper surface of the airfoil. The sharp interface curvilinear immersed boundary (CURVIB) method is used to handle the moving surface of the airfoil. The nondimensional amplitude is a*=0.001 (a*=a/L; a: amplitude, L: chord length of the airfoil) and reduced frequency (f*= fL/U; f is the frequency and U is the freestream velocity) is chosen to match the leading edge vortex shedding frequency. The results of the simulations at the post-stall angle of attack (AOA =20 degrees) show that the lift coefficient increases more than 20% and the drag coefficient decreases more than 40% within the Reynolds number range of Re = 50,000-500,000 for traveling wave actuation of amplitude, a*=0.001, and frequency, f*=8. However, the lift and drag coefficients of the actuated airfoil were similar to the baseline airfoil for Re = 5,000. 
    more » « less
  3. Large-eddy simulations (LES) over a NACA0018 airfoil at a low Reynolds number (Re = 50, 000) fluid flow are performed to investigate the effect of active flow control at different angles of attack (AOA = 10 to 20 degrees) using low amplitude surface morphing backward (opposite to the airfoil’s forward motion) traveling wave actuation on the suction (upper) side of the airfoil. The curvilinear immersed boundary (CURVIB) method is used to handle the moving surface of the airfoil. While our previous simulations indicated the effectiveness of traveling waves at near stall angle of attack (AOA = 15 degrees), the effectiveness of these waves at post-stall AOA such as AOA = 20 degrees is not understood. The actuation amplitude of the surface morphing traveling waves is a* = 0.001 (a* = a/L, a: amplitude, L: chord length of the airfoil), and the range of the reduced frequency (f* = fL/U, f: frequency, U: free stream velocity) is from f* = 4 to 16. The results of the simulations at the post-stall angle of attack (AOA = 20 degrees) show that the lift coefficient, CL, increases by about 23%, and the drag coefficient, CD, decreases by about 54% within the frequency range from f* = 8 to f* = 10. 
    more » « less
  4. The rising global trend to reduce dependence on fossil fuels has provided significant motivation toward the development of alternative energy conversion methods and new technologies to improve their efficiency. Recently, oscillating energy harvesters have shown promise as highly efficient and scalable turbines, which can be implemented in areas where traditional energy extraction and conversion are either unfeasible or cost prohibitive. Although such devices are quickly gaining popularity, there remain a number of hurdles in the understanding of their underlying fluid dynamics phenomena. The ability to achieve high efficiency power output from oscillating airfoil energy harvesters requires exploitation of the complexities of the event of dynamic stall. During dynamic stall, the oncoming flow separates at the leading edge of the airfoil to form leading ledge vortex (LEV) structures. While it is well known that LEVs play a significant role in aerodynamic force generation in unsteady animal flight (e.g. insects and birds), there is still a need to further understand their spatiotemporal evolution in order to design more effective energy harvesting enhancement mechanisms. In this work, we conduct extensive experimental investigations to shed-light on the flow physics of a heaving and pitching airfoil energy harvester operating at reduced frequencies of k = fc=U1 = 0.06-0.18, pitching amplitude of 0 = 75 and heaving amplitude of h0 = 0:6c. The experimental work involves the use of two-component particle image velocimetry (PIV) measurements conducted in a wind tunnel facility at Oregon State University. Velocity fields obtained from the PIV measurements are analyzed qualitatively and quantitatively to provide a description of the dynamics of LEVs and other flow structures that may be present during dynamic stall. Due to the difficulties of accurately measuring aerodynamic forces in highly unsteady flows in wind tunnels, a reduced-order model based on the vortex-impulse theory is proposed for estimating the aerodynamic loadings and power output using flow field data. The reduced-order model is shown to be dominated by two terms that have a clear physical interpretation: (i) the time rate of change of the impulse of vortical structures and (ii) the Kutta-Joukowski force which indirectly represents the history effect of vortex shedding in the far wake. Furthermore, the effects of a bio-inspired flow control mechanism based on deforming airfoil surfaces on the flow dynamics and energy harvesting performance are investigated. The results show that the aerodynamic loadings, and hence power output, are highly dependent on the formation, growth rate, trajectory and detachment of the LEV. It is shown that the energy harvesting efficiency increases with increasing reduced frequency, peaking at 25% when k = 0.14, agreeing very well with published numerical results. At this optimal reduced frequency, the time scales of the LEV evolution and airfoil kinematics are matched, resulting in highly correlated aerodynamic load generation and airfoil motion. When operating at k > 0:14, it is shown that the aerodynamic moment and airfoil pitching motion become negatively correlated and as a result, the energy harvesting performance is deteriorated. Furthermore, by using a deforming airfoil surface at the leading and trailing edges, the peak energy harvesting efficiency is shown to increase by approximately 17% and 25% relative to the rigid airfoil, respectively. The performance enhancement is associated with enhanced aerodynamic forces for both the deforming leading and trailing edges. In addition, The deforming trailing edge airfoil is shown to enhance the correlation between the aerodynamic moment and pitching motion at higher reduced frequencies, resulting in a peak efficiency at k = 0:18 as opposed to k = 0:14 for the rigid airfoil. 
    more » « less
  5. null (Ed.)
    This study examines the biomimicry of wave propagation, a mode of locomotion in aquatic life for the use-case of morphing aircraft surfaces for boundary layer control. Such motion is theorized to inject momentum into the flow on the upper surface of airfoils, and as a consequence, creates a forcible pressure gradient thereby increasing lift. It is thought that this method can be used to control flow separation and reduce likelihood of stall at high angles of attack. The motivation for such a mechanism is especially relevant for aircraft requiring abrupt maneuvers, and especially at high angles of attack as a safety measure against stalling. The actuation mechanism consists of lightweight piezoelectric ceramic transducers placed beneath the upper surface of an airfoil. An open-loop system controls surface morphing. A two-dimensional Fourier Transform technique is used to estimate traveling to standing wave ratio, which is verified analytically using Euler Bernoulli beam theory, and experimentally using a prototype wing. Propagating wave control is tuned and verified using a series of scanning laser vibrometry tests. A custom two-dimensional NACA 0018 airfoil tests the concept in a low-speed wind tunnel with approximate Reynolds Number of 50,000. Both traveling waves and the changes in lift and drag will be experimentally characterized. 
    more » « less