Solar energy has the potential to offset a significant fraction of non-renewable electricity demands globally, yet it may occupy extensive areas when deployed at this level. There is growing concern that large renewable energy installations will displace other land uses. Where should future solar power installations be placed to achieve the highest energy production and best use the limited land resource? The premise of this work is that the solar panel efficiency is a function of the location’s microclimate within which it is immersed. Current studies largely ignore many of the environmental factors that influence Photovoltaic (PV) panel function. A model for solar panel efficiency that incorporates the influence of the panel’s microclimate was derived from first principles and validated with field observations. Results confirm that the PV panel efficiency is influenced by the insolation, air temperature, wind speed and relative humidity. The model was applied globally using bias-corrected reanalysis datasets to map solar panel efficiency and the potential for solar power production given local conditions. Solar power production potential was classified based on local land cover classification, with croplands having the greatest median solar potential of approximately 28 W/m2. The potential for dual-use, agrivoltaic systems may alleviate land competition or other spatial constraints for solar power development, creating a significant opportunity for future energy sustainability. Global energy demand would be offset by solar production if even less than 1% of cropland were converted to an agrivoltaic system.
more »
« less
Higher concentrations of microplastics in runoff from biosolid-amended croplands than manure amended croplands
- Award ID(s):
- 1917614
- PAR ID:
- 10483414
- Publisher / Repository:
- Nature Portfolio
- Date Published:
- Journal Name:
- Communications Earth and Environment
- ISSN:
- 2662-4435
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Solar energy has the potential to offset a significant fraction of non-renewable electricity demands globally, yet it may occupy extensive areas when deployed at this level. There is growing concern that large renewable energy installations will displace other land uses. Where should future solar power installations be placed to achieve the highest energy production and best use the limited land resource? The premise of this work is that the solar panel efficiency is a function of the location’s microclimate within which it is immersed. Current studies largely ignore many of the environmental factors that influence Photovoltaic (PV) panel function. A model for solar panel efficiency that incorporates the influence of the panel’s microclimate was derived from first principles and validated with field observations. Results confirm that the PV panel efficiency is influenced by the insolation, air temperature, wind speed and relative humidity. The model was applied globally using bias-corrected reanalysis datasets to map solar panel efficiency and the potential for solar power production given local conditions. Solar power production potential was classified based on local land cover classification, with croplands having the greatest median solar potential of approximately 28 W/m2. The potential for dual-use, agrivoltaic systems may alleviate land competition or other spatial constraints for solar power development, creating a significant opportunity for future energy sustainability. Global energy demand would be offset by solar production if even less than 1% of cropland were converted to an agrivoltaic system.more » « less
-
Agricultural activities contribute almost half of the total anthropogenic nitrous oxide (N2O) emissions, but proper assessment of mitigation measures is hampered by large uncertainties during the quantification of cropland N2O emissions and mitigation potentials. This review summarizes the up-to-date datasets and approaches to provide spatially explicit and crop-specific assessment of the global mitigation potentials. Here, we show that global cropland N2O emissions have quadrupled to 1.2 Tg N2O-N year 1 over 1961–2020. The mitigation potential is 0.7 Tg N2O-N without compromising the crop production, with 86% from optimizing nitrogen fertilization, three-quarters (78%) from maize (22%), vegetables, and fruits (16%), other crops (15%), wheat (13%), and rice (12%), and over 80% from South Asia, China, the European Union, other American countries, the United States, and Southeast Asia. More accurate estimation of cropland N2O mitigation potentials requires extending the N2O observation network, improving modeling capacity, quantifying the feasibility of mitigation measures, and seeking additional mitigation measures.more » « less
-
Abstract Hot and dry conditions pose a substantial risk to global crops. The frequency of co-occurring heat and drought depends on land–atmosphere coupling, which can be quantified by the correlation between temperature and evapotranspiration (r(T, ET)). We find that the majority of global croplands have experienced declines inr(T, ET) over the past ∼40 years, indicating a shift to a more moisture-limited state. In some regions, especially Europe, the sign ofr(T, ET) has flipped from positive to negative, indicating a transition from energy-limitation to moisture-limitation and suggesting a qualitative shift in the local climate regime. We associate stronger declines inr(T, ET) with faster increases in annual maximum temperatures and larger declines in soil moisture and ET during hot days. Our results suggest that shifts towards stronger land–atmosphere coupling have already increased the sensitivity of crop yields to temperature in much of the world by 12%–37%, as hot days are not only hotter, but also more likely to be concurrently dry.more » « less
An official website of the United States government

