skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The DOI auto-population feature in the Public Access Repository (PAR) will be unavailable from 4:00 PM ET on Tuesday, July 8 until 4:00 PM ET on Wednesday, July 9 due to scheduled maintenance. We apologize for the inconvenience caused.


Title: Reduced global plant respiration due to the acclimation of leaf dark respiration coupled with photosynthesis
Summary Leaf dark respiration (Rd) acclimates to environmental changes. However, the magnitude, controls and time scales of acclimation remain unclear and are inconsistently treated in ecosystem models.We hypothesized thatRdand Rubisco carboxylation capacity (Vcmax) at 25°C (Rd,25,Vcmax,25) are coordinated so thatRd,25variations supportVcmax,25at a level allowing full light use, withVcmax,25reflecting daytime conditions (for photosynthesis), andRd,25/Vcmax,25reflecting night‐time conditions (for starch degradation and sucrose export). We tested this hypothesis temporally using a 5‐yr warming experiment, and spatially using an extensive field‐measurement data set. We compared the results to three published alternatives:Rd,25declines linearly with daily average prior temperature;Rdat average prior night temperatures tends towards a constant value; andRd,25/Vcmax,25is constant.Our hypothesis accounted for more variation in observedRd,25over time (R2 = 0.74) and space (R2 = 0.68) than the alternatives. Night‐time temperature dominated the seasonal time‐course ofRd, with an apparent response time scale ofc.2 wk.Vcmaxdominated the spatial patterns.Our acclimation hypothesis results in a smaller increase in globalRdin response to rising CO2and warming than is projected by the two of three alternative hypotheses, and by current models.  more » « less
Award ID(s):
2021898 2045968
PAR ID:
10483433
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
New Phytologist
Volume:
241
Issue:
2
ISSN:
0028-646X
Format(s):
Medium: X Size: p. 578-591
Size(s):
p. 578-591
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary Leaf dark respiration (Rdark), an important yet rarely quantified component of carbon cycling in forest ecosystems, is often simulated from leaf traits such as the maximum carboxylation capacity (Vcmax), leaf mass per area (LMA), nitrogen (N) and phosphorus (P) concentrations, in terrestrial biosphere models. However, the validity of these relationships across forest types remains to be thoroughly assessed.Here, we analyzedRdarkvariability and its associations withVcmaxand other leaf traits across three temperate, subtropical and tropical forests in China, evaluating the effectiveness of leaf spectroscopy as a superior monitoring alternative.We found that leaf magnesium and calcium concentrations were more significant in explaining cross‐siteRdarkthan commonly used traits like LMA, N and P concentrations, but univariate trait–Rdarkrelationships were always weak (r2 ≤ 0.15) and forest‐specific. Although multivariate relationships of leaf traits improved the model performance, leaf spectroscopy outperformed trait–Rdarkrelationships, accurately predicted cross‐siteRdark(r2 = 0.65) and pinpointed the factors contributing toRdarkvariability.Our findings reveal a few novel traits with greater cross‐site scalability regardingRdark, challenging the use of empirical trait–Rdarkrelationships in process models and emphasize the potential of leaf spectroscopy as a promising alternative for estimatingRdark, which could ultimately improve process modeling of terrestrial plant respiration. 
    more » « less
  2. Abstract Realistic simulation of leaf photosynthetic and respiratory processes is needed for accurate prediction of the global carbon cycle. These two processes systematically acclimate to long‐term environmental changes by adjusting photosynthetic and respiratory traits (e.g., the maximum photosynthetic capacity at 25°C (Vcmax,25) and the leaf respiration rate at 25°C (R25)) following increasingly well‐understood principles. While some land surface models (LSMs) now account for thermal acclimation, they do so by assigning empirical parameterizations for individual plant functional types (PFTs). Here, we have implemented an Eco‐Evolutionary Optimality (EEO)‐based scheme to represent the universal acclimation of photosynthesis and leaf respiration to multiple environmental effects, and that therefore requires no PFT‐specific parameterizations, in a standard version of the widely used LSM, Noah MP. We evaluated model performance with plant trait data from a 5‐year experiment and extensive global field measurements, and carbon flux measurements from FLUXNET2015. We show that observedR25andVcmax,25vary substantially both temporally and spatially within the same PFT (C.V.>20%). Our EEO‐based scheme captures 62% of the temporal and 70% of the spatial variations inVcmax,25(73% and 54% of the variations inR25). The standard scheme underestimates gross primary production by 10% versus 2% for the EEO‐based scheme and generates a larger spread inr(correlation coefficient) across flux sites (0.79 ± 0.16 vs. 0.84 ± 0.1, mean ± S.D.). The standard scheme greatly overestimates canopy respiration (bias: ∼200% vs. 8% for the EEO scheme), resulting in less CO2uptake by terrestrial ecosystems. Our approach thus simulates climate‐carbon coupling more realistically, with fewer parameters. 
    more » « less
  3. Abstract Photosynthetic acclimation to both warming and elevated CO2of boreal trees remains a key uncertainty in modelling the response of photosynthesis to future climates. We investigated the impact of increased growth temperature and elevated CO2on photosynthetic capacity (VcmaxandJmax) in mature trees of two North American boreal conifers, tamarack and black spruce. We show thatVcmaxandJmaxat a standard temperature of 25°C did not change with warming, whileVcmaxandJmaxat their thermal optima (Topt) and growth temperature (Tg) increased. Moreover,VcmaxandJmaxat either 25°C,ToptorTgdecreased with elevated CO2. TheJmax/Vcmaxratio decreased with warming when assessed at bothToptandTgbut did not significantly vary at 25°C. TheJmax/Vcmaxincreased with elevated CO2at either reference temperature. We found no significant interaction between warming and elevated CO2on all traits. If this lack of interaction between warming and elevated CO2on theVcmax,JmaxandJmax/Vcmaxratio is a general trend, it would have significant implications for improving photosynthesis representation in vegetation models. However, future research is required to investigate the widespread nature of this response in a larger number of species and biomes. 
    more » « less
  4. Summary Nitrogen (N) limitation has been considered as a constraint on terrestrial carbon uptake in response to rising CO2and climate change. By extension, it has been suggested that declining carboxylation capacity (Vcmax) and leaf N content in enhanced‐CO2experiments and satellite records signify increasing N limitation of primary production. We predictedVcmaxusing the coordination hypothesis and estimated changes in leaf‐level photosynthetic N for 1982–2016 assuming proportionality with leaf‐levelVcmaxat 25°C. The whole‐canopy photosynthetic N was derived using satellite‐based leaf area index (LAI) data and an empirical extinction coefficient forVcmax, and converted to annual N demand using estimated leaf turnover times. The predicted spatial pattern ofVcmaxshares key features with an independent reconstruction from remotely sensed leaf chlorophyll content. Predicted leaf photosynthetic N declined by 0.27% yr−1, while observed leaf (total) N declined by 0.2–0.25% yr−1. Predicted global canopy N (and N demand) declined from 1996 onwards, despite increasing LAI. Leaf‐level responses to rising CO2, and to a lesser extent temperature, may have reduced the canopy requirement for N by more than rising LAI has increased it. This finding provides an alternative explanation for declining leaf N that does not depend on increasing N limitation. 
    more » « less
  5. Abstract Climate warming is expected to increase respiration rates of tropical forest trees and lianas, which may negatively affect the carbon balance of tropical forests. Thermal acclimation could mitigate the expected respiration increase, but the thermal acclimation potential of tropical forests remains largely unknown. In a tropical forest in Panama, we experimentally increased nighttime temperatures of upper canopy leaves of three tree and two liana species by on average 3 °C for 1 week, and quantified temperature responses of leaf dark respiration. Respiration at 25 °C (R25) decreased with increasing leaf temperature, but acclimation did not result in perfect homeostasis of respiration across temperatures. In contrast, Q10of treatment and control leaves exhibited similarly high values (range 2.5–3.0) without evidence of acclimation. The decrease inR25was not caused by respiratory substrate depletion, as warming did not reduce leaf carbohydrate concentration. To evaluate the wider implications of our experimental results, we simulated the carbon cycle of tropical latitudes (24°S–24°N) from 2000 to 2100 using a dynamic global vegetation model (LM3VN) modified to account for acclimation. Acclimation reduced the degree to which respiration increases with climate warming in the model relative to a no‐acclimation scenario, leading to 21% greater increase in net primary productivity and 18% greater increase in biomass carbon storage over the 21st century. We conclude that leaf respiration of tropical forest plants can acclimate to nighttime warming, thereby reducing the magnitude of the positive feedback between climate change and the carbon cycle. 
    more » « less